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7 Definition

8 The Metropolis algorithm is a Monte Carlo method
9 advanced by Metropolis et al. (1953) to generate sam-

10 ples from a prespecified target probability distribution.

11 Originally, it was applied to investigate the statistical

12 mechanics of fluids. By now, this method and its

13 extensions are used for a wide range of problems in

14 scientific computing (see, e.g., Liu (2004)). The basic

15 idea is to simulate a Markov chain so that its stationary

16 distribution is the target distribution.

17 Let  be a discrete state space (finite or countable)

18 on which the target probability distribution

19 p ¼ pxð Þx2 is defined. It is assumed that

20 px > 0; x 2 . Suppose that Q is a symmetric transi-

21 tion probability matrix, that is Q ¼ qxy
� �

x;y2 with

22 qxy � 0, qxy ¼ qyx,
P

y2 qxy ¼ 1; x; y 2 . The

23 following algorithm generates values (realizations)
24 x0, x1, . . . of a Markov chain X0, X1, . . .. Given the

25 current state Xt ¼ x the next state Xt+1 is determined by

26 the following:

27 1. Choose a proposal state y 2  randomly according

28 to the probability vector Qx :¼ qxy
� �

y2.
29 2. Calculate the acceptance probability a ¼ min

30 {1,py/px}.

313. Accept the proposal by setting Xt+1 :¼ y with prob-

32ability a, or ignore the proposal by setting Xt+1 :¼ x
33with probability 1 � a.
34The stationary distribution of the Markov chain

35X0, X1, . . . constructed in this way is automatically p
36(Madras 2002). After some relaxation time, the chain

37generates samples from the target distribution, inde-

38pendent of the starting value. This allows to compute

39approximations of the mean value or higher moments

40of the distribution.

41The Metropolis algorithm is particularly powerful,

42when the state space on which the probability distribu-

43tion is defined consists of spatial configurations of

44particles (individuals, cells, etc.) that underlie

45a certain interdependence structure. The moments of

46the system then correspond to macroscopic variables

47that are often only numerically computable. In these

48applications, the space is discretized to ensure the

49discreteness of the state space. Then, a configuration

50� (of cells, particles, . . .) can be understood as an

51element of X :¼WS, where S � ℤd is a regular lattice.

52The finite setW consists of all considered cell types or

53states (orientation, mass, cell cycle phase, sensitivity,

54etc.). The interpretation is that at each lattice node,

55there can be at most one cell with a certain cell type

56from W. Each cell’s state shall depend on the states of

57its neighboring cells. Then, the overall

58interdependence structure can be described by

59a Hamilton function H: X !ℝ, which leads, for

60instance, to the target probability distribution
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pð�Þ ¼ Z�1 expf�Hð�Þg; � 2 

61 where Z is a normalizing constant. In this situation,

62 a variant of the Metropolis algorithm, the so-called

63 Glauber dynamics, is given by the following:

64 (0) Start with configurationAu1 �.

65 (1) Pick a target site x 2 S at random with uniform

66 distribution on S.

67 (2) Pick a state w from W randomly with uniform

68 distribution.

69 (3) Calculate the energetic difference

70 DHw
x :¼ Hð�wx Þ � Hð�Þ of a transition � ! �wx ,

71 where �wx ðzÞ :¼ w if z ¼ x and �2xðzÞ :¼ �ðzÞ
72 otherwise.

73 (4) Accept the transition by setting � :¼ �wx with

74 probability pðDHw
x Þ, or ignore the transition with

75 probability 1� pðDH2
xÞ, where

pðDHw
x Þ ¼

1 ifDHw
x < 0

e�DHw
x otherwise

�

76(5) Go to (1) or end the algorithm.
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