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Cellular Potts Model

Synonyms

Glazier-Graner-Hogeweg model; Potts model, cellular / extended; CPM

Definition

A Cellular Potts Model (CPM) is a spatial lattice-based formalism for the study of

spatio-temporal behavior of biological cell populations. It can be used when the details

of intercellular interaction are essentially determined by the shape and the size of the

individual cells as well as the length of the contact area between neighboring cells.

Formally, a Cellular Potts Model is a time-discrete Markov chain (Markov pro-

cess). It is a lattice model where the individual cells are simply-connected domains of

nodes with the same cell index. A CPM evolves by updating the cells’ configuration

by one pixel at a time based on probabilistic rules. These dynamics are interpreted to

resemble membrane fluctuations, where one cell shrinks in volume by one lattice site

and a neighboring cell increases in volume by occupying this site. The transition rules

follow a modified Metropolis algorithm with respect to a Hamiltonian.
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Characteristics

Problem

Biological structure and function typically result from the complex interaction of a

large number of components. When spatio-temporal pattern formation in cellular pop-

ulations or tissues is considered, one is often interested in concluding characteristics

of the global, collective behavior of cell configurations from the individual properties

of the cells and the details of the intercellular interaction. However, even if the basic

cell properties and interactions are perfectly known, it is possible that – due to the

complex structure of the system – the collective traits cannot be directly extrapolated

from the individual properties. Therefore, appropriate mathematical models need to be

designed and analyzed that help to accomplish this task on a theoretical basis. Cellular

Potts models constitute a modeling framework that is applicable when the details of

intercellular interaction are essentially determined by the shape and the size of the

individual cells as well as the length of the contact area between neighboring cells.

This model class has been developed by Glazier and Graner (1993) in the context of

cell sorting. The latter refers to the observed segregation of heterotypic cell aggregates

into spatially confined homotypic cell clusters. The CPM was introduced to explore

the tissue-scale consequences of the Differential Adhesion Hypothesis (Differential Ad-

hesion Hypothesis) that holds that cell type-dependent disparities in the expression

of molecules that regulate intercellular adhesion are responsible for cell sorting. Since

then, this formalism has been elaborated and applied to study a wide range of mor-

phogenetic phenomena in developmental biology.
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The Model

State space

A CPM assigns a value η(x) from a set W = {0, 1, ..., n} to each site x of a countable

set S, cp. Fig.1. The set S resembles the discretized space and is often chosen as a

two- or three-dimensional regular lattice. The set W = {0, 1, ..., n} contains so-called

cell indices, where n ∈ N is the absolute number of cells that are considered in the

model. The state of the system as a whole is described by configurations η ∈ X = WS .

Given a configuration η ∈ X, a cell is the set of all points in S with the same cell

index, cellw := {x ∈ S : η(x) = w}, w ∈ W\{0}. The value 0 is assigned to a given

node, if this node is not occupied by a cell but by medium. Each cell is of a certain cell

type, which determines the migration and interaction properties of the cell, the set of

all possible cell types being denoted by Λ. Denote by τ : W → Λ the map that assigns

each cell its cell type. A cell with index w ∈ W has volume1

Vw(η) :=
∑
x∈S

δ(w, η(x)),

and surface length

Mw(η) :=
1

2

∑
interfaces {x,y}

δ(w, η(x)).

The sum in the last term is taken over all interfaces of a given configuration η, that

are all pairs of lattice neighbors which do not belong to the same cell.

Dynamics

A cellular Potts model (CPM) is a time-discrete Markov chain (Markov process) with

state space X, where the transition probabilities are specified with the help of a Hamil-

tonian. The latter is a function H : X→ R which often has a special structure. Usually,

it is the sum of several terms that control single aspects of the cells’ interdependence

1 For the Kronecker symbol δ it holds that δ(u, v) = 1 if u = v and δ(u, v) = 0 otherwise.
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Fig. 1. Cell-surface interaction in the Cellular Potts Model.

Three cells, each one covering several lattice sites, interact

with each other at the cell surfaces. The strength J of the

interaction depends on the cell types, type T1 depicted in

red, type T2 in green. There are also interactions between

the cells and the medium (white).

structure. The standard CPM uses the following two terms. First a surface interaction

term

Hs(η) =
∑

interfaces {x,y}

J(τ(η(x)), τ(η(y))), η ∈ X, (1)

is specified. Here, J : Λ×Λ→ R, the matrix of so-called surface energy coefficients, is

assumed to be symmetric. Second the volume constraint

Hv(η) =
∑
w∈W

λτ(w)(Vw(η)− vτ(w))2, η ∈ X. (2)

is used. Here vτ , the target volume, and λτ , the strength of the volume constraint, are

cell type-specific parameters, τ ∈ Λ. Depending on the phenomenon under investiga-

tion, further summands can be included. For instance, a constraint can be put on the

surface length (Ouchi et al 2003)

Hm(η) =
∑
w∈W

ατ(w)(Mw(η)−mτ(w))
2, η ∈ X. (3)

Again mτ , the target surface length, and ατ , the strength of the surface constraint, are

parameters, τ ∈ Λ. Thus, the typical structure of a CPM-Hamiltonian is

H = Hs +Hv +H0, (4)

where Hs, Hv are given in (1) and (2) and H0 : X→ R is a model-specific addend. See

the paragraph ‘Extensions’ below for additional examples of H0.

Transitions from one configuration to another follow a special rule which is called

modified Metropolis algorithm (Metropolis algorithm). First two additional parameters
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are specified. A so-called temperature T > 0, which is a biological analogue of the

energy of thermal fluctuations in statistical physics and is a measure of cell motility,

and the transition threshold h, that accounts for energy dissipation during formation

and breaking of intercellular bonds and avoids oscillatory behavior (Savill and Hogeweg

1997; Ouchi et al 2003). Then, the following algorithm is performed:

(0) Start with configuration η.

(1) Pick a target site x ∈ S at random with uniform distribution on S.

(2) Pick a neighbor y of x at random with uniform distribution among all lattice

neighbors of x.

(3) Calculate the energetic difference ∆Hy
x := H(ηyx) − H(η) of a transition η → ηyx,

where ηyx(z) := η(y) if z = x and ηyx(z) := η(z) otherwise.

(4) Accept the transition by setting η := ηyx with probability p(∆Hy
x), or ignore the

transition with probability 1− p(∆Hy
x), where

p(∆Hy
x) =


1 if ∆Hy

x < h

e−(∆H
y
x−h)/T otherwise

(5) Go to 1 or end the algorithm.

Consequently, only such transitions are possible where the index of at most one lattice

site is changed, resulting in a shift of the cell’s center of mass. The new assignment to

this lattice site is chosen from the cell indices of the neighboring lattice sites. These

dynamics are interpreted to resemble membrane fluctuations, where one cell shrinks in

volume by one lattice site and a neighboring cell increases in volume by occupying this

site.

To complete the model, appropriate boundary conditions must be specified. If

the influence of the boundary shall be neglected, periodic boundary conditions are used.

This means that the space can be thought of as being mapped onto a torus. However,
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fixed boundary conditions, where the interaction between cell surfaces and confining

environment is explicitly modeled, can be defined as well.

Extensions and applications

The CPM model formalism has been used for several problem-specific extensions. In

general, this is done by including additional terms into the Hamiltonian (4). In some

cases, these additional terms also depend on the chosen target spin, thereby changing

the weights for the acceptance of a proposed transition in the modified Metropolis

algorithm. The latter extensions are called kinetic extensions, since they directly affect

the transition rates.

Cell motility emerges in the CPM implicitly from the fluctuations of the cells’ cen-

ter of masses. To explicitly model physical characteristics of cell motility such as cell

persistence and inertia, additional terms that constrain the cell displacement per time

step can be added to the difference ∆H of the standard CPM-Hamiltonian (4) that is

calculated in step (3) of the modified Metropolis algorithm. Inertia, for example, has

been modeled by constraining the cell velocity increment via the term

∆Hinertia(t) =
∑
w∈W

λinertia(w)
∥∥∥−→vel(w, t)−−→vel(w, t−∆t)∥∥∥2 , (5)

where
−→
vel(w, t) denotes the instantaneous center-of-mass velocity of the cell w at time

t, λinertia(w) is a cell-specific parameter and ∆t is one or more Monte Carlo steps

(Balter et al 2007). Since the increment of the Hamiltonian depends on the proposed

transition, this is a kinetic extension of the CPM.

Cell shapes arise in the CPM implicitly from satisfying the volume constraint. In the

two-dimensional CPM, cells adopt approximately hexagonal shapes, producing a space

tiling pattern comparable to epithelial tissues. Elongated cell shapes can be modeled

by imposing a cell length constraint which renders the major axis of the ellipsoidal
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approximation of the cell’s shape to be close to a predefined target length or ratio

(Zajac et al 2003). Rod cell shapes with particular stiffness have been modeled using

a compartmentalized cell concept, where each cell consists of a row of standard CPM

cells (Starruß et al 2007).

Chemotactic response to some field c : S → [0,∞) of signals can be modeled in the

simplest form by an addend Hchemo =
∑

w∈W\{0} λchemo(w)
∑

x∈cellw c(x) to the Hamil-

tonian, where λchemo is a possibly cell type-specific chemotactic response parameter

(Glazier et al 2007). If λchemo < 0, the cells prefer to move up the chemotactic gradi-

ent, for λchemo > 0 they prefer to move down the gradient. There have been several

more refined extensions to the CPM that model chemotaxis (Glazier et al 2007). One

example is the following kinetic extension used by Savill and Hogeweg (1997) where

the positions of the target spin x and the trial spin y in a proposed transition η → ηyx

are taken into account,

∆Hchemo =
∑
w∈W

λchemo(w)(c(y)− c(x)). (6)

Hybrid and multiscale modeling: The CPM can be coupled to auxiliary formalisms,

typically using systems of differential equations. A hybrid approach enables multiscale

modeling in which molecular species are represented as continuous quantities, and cells

are treated as discrete entities. For instance, CPM parameters pertaining to cellular

properties can be under the control of ordinary differential equations, representing

subcellular processes such as gene regulation. CPM cell behavior can also be linked to

lattice-based reaction-diffusion systems representing the biochemical microenvironment

through e.g. chemotaxis. A similar approach can be adopted to spatially represent the

intracellular biochemistry that exerts influence on the protrusions and retractions in

the CPM by kinetic modulation of transition probabilities (Marée et al 2006).
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Implementations

When applied to specific biological problems, the CPM framework is typically used

with several extensions and modification. Its analysis comprises extensive numerical

simulation studies. In an effort to provide a common implementation for CPM simu-

lations, CompuCell3D has been developed (www.compucell3d.org). This open source

software implements a large number of common CPM extensions and provides a graph-

ical modeling interface.

Limitations and merits

From a theoretical perspective, the CPM is poorly understood. Hence, the analysis

of CPM models can effectively only be performed by numerical simulation. Important

mathematical methods, such as rigorous spatio-temporal limit procedures to derive

the laws that guide the behavior of certain macroscopic variables, are not yet avail-

able. Since the classical Metropolis algorithm (Metropolis algorithm) is modified in the

CPM, these models differ in essential aspects from classical equilibrium models. In ad-

dition, CPMs have been criticized because their calibration is often non-trivial. Cellular

behaviors are specified in an indirect or phenomenological manner via the Hamiltonian

and the modified Metropolis algorithm. Consequently, the relation between the param-

eters that control the dynamics of the CPM and the biological-physical quantities they

represent often remains allusive.

Despite these limitations, the CPM formalism has found application in many topics,

mainly in the field of developmental biology. Its spatial and cell-centered nature renders

it suitable for the study of phenomena where a mesoscopic description of individual

cell shape and motility is important. It provides a flexible modeling framework that

allows incorporation of problem-specific extensions. Moreover, coupling the CPM to

auxiliary model formalisms enables the exploration of the complex interplay between
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several factors at different biological scales, acting at the intracellular, the intercellular

and the tissue level.

Cross-references

Markov process; Metropolis algorithm; Differential Adhesion Hypothesis; collective be-

havior; spatio-temporal pattern formation
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