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Abstract. A general result on duality for Feller processes is stated which ap-
plies in particular to interacting particle systems. A rather natural condition
is presented which ensures that the duality relation between the generator of a
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1. Introduction

The stochastic concept of duality plays an important role in the theory of
interacting particle systems (IPS). It allows to relate the evolution of a given
interacting particle system to the evolution of another Markov process which
is often easier to analyze. The duality technique goes back to Spitzer [14] who
used it for the characterization of the stationary distribution of the symmetric
exclusion process. Duality for spin-flip processes was employed by Holley and
Stroock [6] for the study of the ergodic properties of such processes. Both
approaches were systemized by Liggett [9]. There are many recent publications
such as [7,8,10,11] where duality is successfully applied.

The idea behind duality shall be illustrated within the following simplified
setting. Assume that (T);>0 and (P;);>¢ are the transition semigroups of two
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time-continuous Markov processes on 2 and %, respectively, where 2~ and %
are finite sets. Let be H : 2" x % — R. The two Markov chains are called
H-dual, if

T.H(-,B)(n)=P:H(n,-)(B), neZ,Be%,t>0. (1.1)

The infinitesimal characteristics of (T¢);>0 and (P¢);>¢ shall be denoted
by A and Q, respectively. The rate matrices A and Q are H-dual, if

AH("B)(W):QH(nv')(B)v neZ,Be, (1'2)

is fulfilled. One finds easily, that (1.1) implies (1.2). Indeed, one obtains
from (1.1) that for fixed ne 2", B € ¥,

S(TH(, B)n) — H(n, B)) =  (BH(1,)(B) ~ H(1, B)), >0,

The limit of the left-hand side as t — oo exists and is equal to AH(-, B)(n).
The according limit of the right-hand side is equal to QH (n,)(B). Thus we
get (1.2). To show that the reverse implication is also true, the following idea
is pursued. Fix n € Z°, B € &, and define
u(t,n, B) =TH(-, B)(n), t=0,
and
IU(taBan):]PtH(Th)(B)y tZO
Then, as (d/dt)P, = QP,, it holds that
d
%U(thvn):QU(tvvn)(B% t>05 U(0+7B7n):H(n7B)
for each B € &, n € 2. Thus the function v(-,-,n) solves for each n € 2" the
initial value problem
d
ﬁv(t,B) = Qu(t,)(B), t>0; v(0+, B) = h(B), (1.3)
where h = H(n,-). As (d/dt)T; = AT; = T A, one obtains
d
St B)=T,AH(.B)(n), t>0;  u(0+n,B)=H( B),

for each n € 2. Inserting the infinitesimal duality relation (1.2), one finds for
the term on the right-hand side that

TAH (-, B)(n) = T+(C — AH(B,)(Q)) (n) = To(C — QH(C,)(B)) (1)
=T > QUB,OYH(-,C)) () = > QB,CYTH(-,C)()

cew cew
= > Q(B,C)ult,n,C)
Cew
= Qu(t,n,-)(B), t>0,ne i, Be¥.
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Hence

d

St B) = Qu(t,n,)(B), t>0,  u(0+n,B)=H(, B),

for each n € ', B € %, that is u(-,n,-) is for each n € 2" a solution of (1.3).
If this initial value problem has for each n € 2 a unique solution, then the
semigroup duality relation (1.1) holds:

TtH(ﬂB)(n) = U(t,?],B) = U(t7777B) = ]PtH(nﬂ )(B)

fort>0,ne Z,Be%.

In the context of IPS one wishes to replace A by the Markov generator A of
a Feller semigroup (T}):>0 on some compact space (2, d). The state space &
of the dual chain is usually chosen to be countably infinite. The question that
shall be addressed in this study is under which conditions (1.1) and (1.2) are
equivalent in this general situation.

In [9, §II1.4 and §VIIL.1], the equivalence of (1.1) and (1.2) was considered
for specific duality functions and specific interacting particle systems, namely
spin-flip systems and symmetric exclusion processes. Essentially the same ar-
guments as in [9] were used, for instance, in [7] for the voter-exclusion process,
in [8] for an exclusion process with multiple interactions and in [10] for the sym-
metric two-particle exclusion-eating process. However, the key issue of proving
that the initial value problem (1.3) has a unique bounded solution was not
handled in these works. This fact was claimed without proof or, in the case
of [7], with reference to [4, Thm.1.3]. The latter reference contains an only
vaguely related statement about strongly continuous semigroups. Note that the
semigroup on the set of bounded functions generated by a rate matrix @ is,
in general, not strongly continuous. In the special case of spin-flip processes,
Holley and Stroock [6] employed the martingale problem to derive duality prop-
erties. They considered the initial value problem (1.3), as well, and referred to
‘obvious modifications’ of Lemma (4.1) and Lemma (4.2) in [15] to conclude its
unique solvability. However, the cited propositions are about diffusions on R%.
Therefore it is not clear in which way they apply within the IPS-duality con-
text. Despite this weak point, many authors referred to [6] without giving more
detailed arguments there. For instance, Lopez and Sanz [11] considered spin
process, where a finite number of states is allowed at each lattice site, and
rather general duality functions. Although their setting is in many respects
more general than that in [6], they referred to this source without presenting
arguments that justify this.

In this paper, the equivalence of (1.1) and (1.2) is derived in full detail for
general Feller processes with compact state space and general duality functions.
Provided that the generator A of the Feller process and some rate matrix Q
satisfy the infinitesimal duality relation (1.2) with respect to a suitable duality



318 A. Vofi-Béhme, W. Schenk and A.-K. Koellner

function H, a rather natural condition (Q) on @ ensures that @ is non-explosive
and the Markov chain generated by Q is H-dual to the process corresponding
to A, that is (1.1) holds. This result applies in particular to general interacting
particle systems in the sense of Liggett [9, §1.3]. It is valid without restric-
tions on the structure of the duality function H. Thus a generalization of the
above-mentioned method is derived and the previously lacking details in the
literature are worked out within a more abstract setting. As a corollary of our
considerations, an additional theorem for Feller processes that are generated by
a sum of operators is presented. The findings are applied to a couple of IPS
examples. Here the goal is to illustrate that the developed condition for duality
is manageable for a variety of different IPS.

The paper is organized as follows. After the main concepts on Markov
semigroups, interacting particle systems and Markov chains are introduced in
Section 2, the equivalence of (1.1) and (1.2) under condition (Q) is proven in
Section 3 for general conservative Feller processes on compact sets and general
duality functions (Theorem 3.1). This statement is based on Proposition 3.1
where the unique solvability of the initial value problem (1.3) is shown. Pre-
requisites are Lemmata 3.1-3.4 where the arguments that were outlined above
are proven rigorously in the generalized setting. The additional theorem is pre-
sented in Corollary 3.1. In Section 4, the results are specialized to apply to
specific interacting particle systems.

2. Setup and notations

2.1. Markov semigroups

Let be given a compact, separable metric space (£';d). Define the space
B(Z) of all bounded and Borel-measurable real functions on 2~ equipped with
the supremum norm || - ||oo. The subspace of all continuous real functions is
denoted by C(Z).

In accordance with [9], a strongly continuous non-negative contraction semi-
group (13)t>0 on C(Z°) which satisfies 31 = 1!, ¢ > 0, is called a Markov
semigroup. Note that each Markov semigroup on C'(%£") determines a unique
Markov process, which is even a Feller process [5, Thm.4.2.7].

From the Hille— Yosida Theorem it follows that each Markov semigroup on
C(Z) has an infinitesimal generator which is a Markov generator in the sense
of [9, Def.1.2.7]. Conversely, each Markov generator generates a unique Markov
semigroup on C'(2") [5, Thm.4.2.2]. Thus one can think of a Feller process on
Z as being given by its Markov generator. In the case that 2 is compact, it is
often suitable to construct the Markov generator from a Markov pregenerator. A
Markov pregenerator is a linear operator A : ¥(A4) — C(Z") with dense domain
Y(A) C C(Z") which satisfies the following conditions (G1) and (G2).

M) :=1,ne .
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(G1) 1 € 9¥(A), Al = 0;
9

),
(G2) If f € ¥(A) and f(no) = max{f(n) :n € Z} > 0 for some 1y € £, then
Af (o) < 0.

Condition (G2) is known as mazimum principle. Note that a Markov pregener-
ator is closable in C(2") [9, Prop. 1.2.5]. Its closure A is a Markov generator if
and only if A satisfies the following condition (G3) [5, §1.2].

(G3) There is a Ag > 0 such that R(Agl — A) = C(Z).

2.2. Generation of interacting particle systems

The Markov processes that will be considered in the following have state
spaces (2, d) which are special function spaces. See the book of T. Liggett [9]
for the detailed construction. Below the main terms are outlined.

Suppose that (W, p) is a compact metric space. Let be S a countable set.
Frequently S is chosen as Z™, n € IN. There is a metric d on 2" := WS which
generates the product topology on £ . Note that (£, d) is a compact metric
space. The elements of 2" are referred to as configurations on S.

In the context of this paper, a Markov process is named interacting particle
system (IPS), if it is a Feller process on 2 that is constructed in the way
outlined below. An IPS models the random time changes of configurations.

According to Paragraph 2.1, each IPS is uniquely determined by a Markov
generator and can be constructed from a Markov pregenerator. The latter is
determined by the specification of local transition rates. In detail, let be . :=
{TCS:|T| <00, T#0}?and T :={T C S:|T| < oo} =TU{0}. Obviously,
T is finite or countably infinite. For T' € .7, define the local configuration space
X = W7 and the corresponding projection

mr: X — X = (n(x))mET-

Consider the map

_ . n(x), ifxgT,
T XX X — X rr(n,v)(x) {v(x), foeT
Given a configuration n € £ and a local configuration v € 27, the trans-
formation 77(n,v) replaces the local configuration 77n in T by v. A family
(cr(+,))res of functions ¢ : 2" X B(Zr) — [0,00) is a family of transi-
tion rate functions, if the functions cr satisfy, for each T' € 7, the following
conditions (C1)—(C3).

(C1) The function n — cp(n,I'),n € 27, is measurable for each I € B(2Z7).

2|T| stands for the cardinality of T
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(C2) The map I' — cp(n,I'), T € B(L7), is a finite measure on B(Z7) for
eachne 2.

(C3) The function n — f%T f)er(n,dv), n € Z, is continuous for each f €
C(27).
We define

CT(‘T) ‘= sup {|CT(nadu) - CT(Cadv)‘ TS\{x}T = ﬂ-S\{JJ}C}ﬂ T e Sa Te y7

and

cr = sup Z cr(n,du), Te€T.
ne‘%ueﬁfT

A family ¢ = (er(+,))re s of transition rate functions is admissible, if

(C4) sup,eg ZTax cr < 00,

and

(C5) SUPyes ZTBm Zz;é.’r CT(Z) < 00.

Next some function spaces are specified which can serve as domains for
the pregenerator of the IPS that shall be constructed. A continuous function
f+ Z — R is a tame function, if there exist a set T' € .7 and a function
fr : Zr — R such that the representation f = fr o wp holds. In this case,
the function f does not depend on the coordinates on S\ T, that is for any
m,n2 € J satisfying mprn; = wrne one has f(m) = f(n2). Let the set of all
tame functions be denoted by T'(Z"). Note that T(%") is a dense subset of
C(Z) (see, for instance, [9, §1.3]). Define further

D(Z) = {f €0
ZSUP{U(U) —fQOl:nC € X, To\(oyn = Ts\ (3¢} < OO}-
T€S

Obviously T(Z") C D(Z") and therefore D(%Z") is dense in C'(Z").
Suppose now that a family ¢ = (cr(+,-))res of transition rate functions is
given. For T' € .7, the operator Ar : C(Z") — C(Z") defined by

Arf(n) = / (Flrr(n.0) — F))er(n do), feC(Z), ne

Zr

is a bounded linear operator. Indeed, the property (C3) ensures that the func-
tion Apf is continuous, if f is continuous. The linearity of Ap is obvious and
the boundedness of Ar follows from

|Arf(n)| < 2||f||m5556T(C, 2r) <oo, feC(Z), neXZ.
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The fact sup¢¢ o er (¢, Z1) < o0 is a consequence of the continuity of ez (-, Z7)
on the compact set 2. Moreover, it is easy to see that A7 has the properties
(G1) and (G2) of a Markov pregenerator. As Ar is bounded, it is a Markov
generator.

Next we define an operator A : D(Z") — C(Z") by

Af(n) =Y Arf(n) (2.1)

TeT

=Y [ ertnan) [fGrno) - fn)), we 2, fe D)

TET 5

Note that .7 is a directed set with respect to the set inclusion C, thus the infinite
sums above are to be understood in terms of net convergence. By [9, Prop.1.3.2],
A is well-defined if ¢ is admissible. Further, according to [9, Thm.I1.3.9], the
closure of A is a Markov generator which generates a Markov semigroup (73):>0
on C(Z). The corresponding Markov process with cddldg trajectories is an
interacting particle system.

2.3. Generation of continuous-time conservative Markov chains

The set-up in the following corresponds essentially to [2, Ch.8] and [13,
Ch.2]. Suppose that % is a finite or countably infinite set. One says that for

a:?% — R the sum
Z a(B) =:a
Bew

exists and is equal to a, if for each monotonically increasing sequence (#%;,)nen
with %, C %, |%,,| < co and ¥ = Upen, it holds that

nllrrgo Z a(B) = a.

Be%,

Define the space B(#) of all bounded real functions on % equipped with the
supremum norm || - ||ec-

A function P : & x % — [0,1] is called transition matriz or stochastic
matriz, if ) -cq P(B,C) =1 for each B € #. Each stochastic matrix IP can
be understood as a contraction on B(#') by

Ph(B):= » P(B,C)h(C), heB(¥), Be¥.
Ccew

If a function h :  — R is not bounded, but the sum on the right-hand side
above converges for each B € &, the symbol Ph is used as well for the resulting
function on %'.
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A family (IP;):>0 of stochastic matrices is a conservative transition semigroup
on &, if Py = I, where I is the identity matrix, and Py, = PPy, ¢,s > 0.
A conservative transition semigroup (P;);>o is continuous, if, for each B € &/,
limg)o(1 —P4(B, B)) = 0. Note that the continuity of the transition semigroup
(Py)¢>0 implies that each function t — P,h(B),t > 0, is continuous, where
h € B(%) and B € % are fixed. Indeed, by the semigroup property it is
sufficient to show right-continuity at zero. Choose h € B(#') and B € . Then

[P(B) = h(B)| <2kl Y Pu(BLC)
ce#\{B}
=2|[hllc(1 =P:(B,B)), BeY,
hence the function ¢t — P:h(B), t > 0, is right-continuous at 0.
Each continuous, conservative transition semigroup (IP;);>¢ is associated to
a unique Markov chain on #'.

Suppose that we are given a continuous, conservative transition semigroup
(P¢)¢>0. Then it is well-known that the infinitesimal characteristics

Q(B) = 13%1%(1 —P(B,B)) € [0;00], BeW,

Q(B.C) = lim %(IPt(B,C)) c0:x), B,Ce®,

exist [2, Thm. 2.1]. For convenience let
Q(B,B):=-Q(B), Be¥.
Since the transition semigroup is conservative, one has
> Q(B.C)=-Q(B,B)<cc, Be.
Ce#\{B}

Hence the infinitesimal characteristics @ of a continuous, conservative transition
semigroup satisfies the conditions (R1)—(R3) below.

A continuous, conservative transition semigroup (P¢);>o on % with infinites-
imal characteristics Q is said to satisfy condition (PQ) if

> Py(B,C)Q(C) <0, Be, t>0. (PQ)
Cew

A matrix Q := (Q(B,C))p,cew with
0<Q(B,C)<o0, B,Cec¥%, B+#C, (R1)

and
-0 < Q(B,B)=:-Q(B) <0, Be¥%, (R2)
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as well as
> QB,C)=0, Be¥, (R3)
cew

is a rate matriz or Q-matriz. Each rate matrix Q := (Q(B,C))p,cew can be
understood as a linear operator on B(%/) by

Qi(B) = ) Q(B,C)h(C)
cew
=Y QB,O)MC)-hB), heB#), BeX.
Cew
This operator is bounded, if the condition
sup Q(B) < oo Q")
Be#
holds. If a function f: % — R is nonnegative then

Qf(B):= Y Q(B,O)f(C)=-Q(B)f(B)+ > QB,C)f(C), Be,

Cew Ce#\{B}

is well-defined in [0, oo].
Below it is typically assumed that a rate matrix satisfies the following con-
dition which is weaker than (Q*).

(Q) There are a sequence (%, )new of subsets %, C % that increase to % as
n — oo, a nonnegative function ¢ on % with lim,, .. infgga, ©(B) = oo
and a real ¢ such that the following conditions are satisfied.

Sup Q(B) <0, mneN; (QO)
Qp(B) <cp(B), Be¥; Q1)
Q(B) <cp(B), Be%. (Q2)

Condition (Q1) is sufficient for the existence of a unique conservative and contin-
uous transition semigroup (P;);>¢ with given infinitesimal characteristics @ [1,
Cor. 2.2.16]. According to [1, Prop.2.2.13], (Q1) is equivalent to the statement

Pip <e“p(B), t>0, Be¥. (P1)
If a rate matrix @ satisfies condition (Q), then it fulfills condition (PQ). Indeed,
from (Q1) and (Q2) via (P1) one has
S RU(B.OIQC) ¢ 3 Pu(B.C)o(C) < echo(B) < oo,
Cew Cew

where t > 0, B € . Note that the condition (Q) and thus condition (PQ) are
implied by the more restrictive condition (Q*).
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3. A duality criterion

Assume that (£7;d) is a compact metric space and let be (T}):>0 a Markov
semigroup on C(2Z) with associated Markov generator (A,9(A)). Suppose
that & is an at most countably infinite set and (P;);>0 is a continuous, conser-
vative transition semigroup on % with infinitesimal characteristics Q. Further
assume that H : Z° X % — R is a bounded function which satisfies

H(-,B)ed®(A), Be%. (3.1)

The semigroups (7});>0 and (P;);>o and, accordingly, the corresponding
Markov processes are said to be in duality with respect to H (H-dual), if the
following condition (D-S) is satisfied.

TtH(?B)(n):IPtH(Th)(B)v ne f%v BG@, t>0. (D_S)
The generator A of a Markov semigroup (7});>0 and the infinitesimal character-
istics Q of a continuous, conservative transition semigroup (P;):>0 on % satisfy
condition (D-I), if
AH(-,B)(n) = QH(n,-)(B), ne X2, Be¥, (D-T)
is fulfilled.

Lemma 3.1. Suppose that f € B([0,00) x #)3. If the limit lim|o f(t, B) =:

f(0+, B) exists for each B € Y, then
P B) (1. B)
t10 t

Proof. Let B € %, f € B(|0,00) x #) and define g(t,C) := f(¢t,C) — f(t, B),
t>0,C e . Itis to show that

lim%< S 4t ORU(B,C)) = 3 4(0+,C)Q(B,C).
cew

t]0
* Cew

= Qf(0+,B), Bew.

Let some sequence (%;,)nen be given, the #;,’s being finite subsets of % which
increase towards % as n — oo. There exists ng € IN such that B € %, for all
n > ng. Thus one obtains for n > ng, t > 0,

Pig(t,B) = 3 g(t, O)P4(B,C)

Cew
ce, cCew\%,

=Y 9t.OP(B.C) ~ gl (1~ Pu(B,B)) = > Pu(B.C)).
ce#, Ce#\{B}

3For general measurable spaces E, the symbol B(F) denotes the space of real-valued,
bounded and measurable functions on E.
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Both sums at the right-hand side above are finite, thus one concludes

lim > o 11>t B,C)= > g(0+,C)Q(B,C)
Ce n Cce?,
and
. 1
Ce#, \{B} ce#,\{B}
Consequently,

Lol
hr?llonf ~P:g(t, B)

> 3 g(0+,0Q(B.C) — lgl<(QB.B) - Y QB.C))

Ce, Ce#,\{B}

for n > ng. The term Q(B, B) — > cca,\ 5y Q(B,C) tends to 0 as n — oo,
therefore

|
11%6nf EIPtg(taB) > Z 9(0+,C)Q(B, C).
Cew

Analogously, the estimate

IPtg(th) = Z g(t’C)IPt(B’C)

Cew
<Y 9t,OPUB,C) + gl Y, PuB,C)
Cce%, Ce\%,

yields

1
tlo
! Cew
O

Lemma 3.2. If f € B([0,00) x %) is right-continuous with respect to the first
argument, then

lirr%IPsf(&B) =P:f(t,B), t>0, Be¥%.

Proof. Fix B € %, f € B(]0,00) x #) and choose a sequence (%},)necn, the
%,’s being finite subsets of % which increase towards % as n — oo. Then, for
sufficiently large n such that B € %,

P.f(s,B)2 Y f(s,C)P.(B.C) - |If|=(1- Y Pu(B.O)),

ce%, ce%,
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which yields

hmlanP sf(s,B) Z f(t, CPy(B,C) — ||fHoo(1_ Z IPt(B,C')).

Cey ce#,

Taking the limit n — oo on the right-hand side, one obtains

hmlanPfsB thCIPt(B ).
Cew

Analogously,
limsup P, f(s, B) < Y f(t,C)Py(B,C).
st cew
O

Lemma 3.3. Let B € % and h € B(#'). Then the function t — P,h(B),
t > 0, is continuously differentiable and the derivative satisfies

(1)
d

2 Peh(B) = Q(P:h) = > Q(B,C)[P:h(C) — Pih(B)], t>0.
Cew

(ii) If the transition semigroup (P,),>¢ satisfies the condition (PQ), then

L p,1(B) = P.(Qh)(B)

dt
= Y Py(B,C) Y QC,V)[h(V)=h(C)], t>0.

Cew Vew

Remark 3.1. A proof of the above lemma can be found in [3, §13.5], where it was
used to derive an integration by parts formula for jump processes. Nevertheless
an independent proof is given here to make the argumentation self-contained.

Proof.
(i) Let t > 0, B € & and h € B(%'). The semigroup property of (Ps)s>0
gives

L(Peah(B) ~ Ph(B) = 1 3 Pu(B,O)[PA(C) ~ PR(B)], 5> 0.
Ccew

Define
up,(t, ) == Pih(-) — P:h(B).
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Clearly, up, g(t,-) € B(#') and up, g(t, B)=0. Applying Lemma 3.1 to up, g(t,-),
one obtains

lim = 3 Py(B,O)PA(C) — Pyh(B)]
sl0 s Cew
= lim éwsuh,g(t, )(B)= > Q(B,Cupps(t,C)

Cew

= ) Q(B,C)[P:h(C) — Pih(B)].

Ccew
Hence
.1
lim —(Pyyh(B) = Pih(B)) = ) Q(B.C)[P:h(C) — Peh(B)].
o108 cew
This shows that the continuous function ¢ — P h(B), t > 0, has at each ¢t > 0
the right-hand side derivative
> QB,Cuns(t,C).
Cew
As up, g(-,C) is continuous and uniformly bounded by 2||h|| and because of

Y. Q(B.C)=Q(B) <o,

Ce#\{B}

this right-hand side derivative of ¢ — P;h(B), ¢ > 0 is continuous. Each con-
tinuous function with continuous right-hand side derivative is differentiable and
its derivative agrees with its right-hand side derivative. This proves (i).

(ii) Suppose that (IP;);>¢ satisfies (PQ). For B € & and h € B(%), one
obtains from the semigroup property of (IP;);>¢ that
(P45 h(B) — P:h(B))
= Py(Poh(-) — h())(B) = Y Py(B,C)(P:h(C) — h(C))
Cew

= Y Py(B,C) Y P(C,V)[h(V)=h(C)], st>0.
Cew Vew

Obviously

|2 PUCVIRW) = (O] <20l YD PG V)

Ve¥ Vew\{C}
=2||hl(1 = P4(C,C)), s>0, CeX.
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Each continuous conservative transition semigroup (P:);>o with infinitesimal
characteristics @ satisfies

%(1 ~P,(C,0)<Q(C), s>0,Ce,

see, for instance [2, 8.(2.15)]. Hence

S PG V)[R(V) - h(C)]‘ < 2|hQ(C), s>0, Ce.
Vew

y (PQ), it follows that
LY R(B.O| X RUCVIIY) ~ h(O)

Cew Vew

< 2||h||oo Z IPt(BaC)Q<C) <0
Cew

for s,t > 0. According to Lemma 3.1, it holds for each C € # that
15?8( Z]P (€, V)] ) V%QCV — h(C)].

Hence

Jim © Z Py(B,C) > P (C,V)[(V)-h(C)]

5108 Ve \{C}
= S P(BOImE Y P VIA(Y) - h(O)
Cew 105y ey
= Y Py(B,C) Y QC,V)[h(V)=h(C)], t>0.
Cew Vew

Thus the right-hand side derivative of the function ¢ — P:h(B), t > 0, admits
for each t > 0 the representation

lim L (B, h(B) ~ PA(B)) = Y Pu(B,C) 3 QUG VIRV ~ h(O)]
Ce¥ Vew

It is argued in the proof of (i) that the derivative of the function ¢ — P;h(B),
t > 0, exists and agrees with its right-hand side derivative. Hence

g11>t = > Py(B,C) Y QC,V)[h(V)-h(C)], t>0.

Cew Vew
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If a function v € B((0,00) x %) is differentiable with respect to the first
argument, then this partial derivative shall be denoted by

u'(t, B) := %u(t,B), Be%.

Lemma 3.4. Let Q be a rate matrix with associated transition semigroup
(Py)i>0. Suppose that (PQ) holds. If a function u € B((0,00) X %) is con-
tinuously differentiable with respect to the first argument and satisfies

[W/(t,B)| < KQ(B), t>0, Be¥%, (3.2)

for some constant K > 0, then for each B € % the function t — Pu(t, B),
t > 0, is differentiable and its derivative satisfies

d d
- (Puu(t,)(B)) = — (Pou(t, )(B))

Proof. Fix t > 0 and consider a function u € B([0,00) x ¢) that satisfies (3.2)
for some constant K > 0. Choose § > 0, v € R with |v| < § < ¢. One has

Py u(t+v,-) — Peult,-)
=P (u(t+v, ) —ult, ) + Pippu(t +v,-) — Pu(t +v,-)).
Fix B € % and consider

%]P( (t+v,-) Z]Pth “’Cg ut,0) (3.3)
Cew

+ P/ (t,-)(B), t>0.

s=t

One finds that
1 t+v
)‘ < / (s, 0)|ds < KQ(C), Ce,

’u(t—l—v,C) —u(t,C
v

where } oo Po(B,C)Q(C) < o0, B € %, according to (PQ). Thus the Dom-
inated Convergence Theorem applies for the limit v | 0 in (3.3). One concludes

D)
lim 3" py(B,0) Y = 3 P(B,OW(1L,0).

ov
vlov Aoy Cew

One verifies easily, that the function [0,00) x # 3 (v,C) — Pu(t + v,-)(C)
is bounded and satisfies lim, o Piu(t + v, -)(C) = Piu(t,-)(C), C € ¥, by the
Dominated Convergence Theorem. Therefore, the limit

lifﬁl . (P,Pyu(t 4 v,-) — Pyu(t +v,-))(B)
v v
d

= Q(Pru(t,))(B) = — (Psu(t,)(B))
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exists for each B € ¢ by Lemma 3.1 and Lemma 3.3 (i). For v < 0, observe
that

IPtJrvu(t + v, ) - IPtu(t + v, ) = _<IP7UIPt+vu(t + v, ) - Pt+vu(t + v, ))

Since lim, 0 Pyy,u(t + v,-)(B) = Pwu(t,-)(B), B € #, by Lemma 3.2, one
can conclude from Lemma 3.1 applied to the bounded function [0,00) x # >
(v,C) = Pryu(t +v,-)(C) that

lin = (P Prgu(t + 0,9) = Pesoult +0,) (B) = QPoult, ))(B), Be.

Consequently,

111%1(1Pt+vu(t+v ) = Pt +v,))(B) = - (Pault,)(B))

Proposition 3.1. Let Q be a rate matrix with associated transition semigroup
(Py)¢>0 and let the condition (PQ) be satisfied. Let h € B(#') be fixed. Then
the initial value problem

—u (t,B) = Y_ Q(B,C)[u(t,C) —u(t, B)], (IVP)

Cew
u(0+;B) =h(B), Be%, t>0,

has a unique solution in B([0,00) x %) which is given by
u(t,B) =Pih(B), t>0, BEY.

Proof. Fix h € B(%). The function u(t, B) :== P:h(B), t > 0, B € %, sat-
isfies (IVP) by Lemma 3.3(i). Since the semigroup (P;);>o is contractive,
u € B([0,00) x &).
Suppose that v € B([0,00) x %) solves (IVP). Then the function v(-, B)
is differentiable for each B € Y. Its derivative is continuous, since it admits a
representation as the uniform limit of continuous functions. Indeed, choosing a
sequence (%, )nen of finite subsets of % which increase towards % as n — oo,
one finds that
= Z Q(B’ C)[u(’ C) _u('7 B)] = lim Z Q(B’ C)[u<7 C) _u<'7 B)]

n—oo
Cew ce,

In addition, it holds that

WEBI< Y . QB,O(tC) —o(t, B) < 2|v]|Q(B), t>0, Be.
Ce#\{B}
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Hence Lemma 3.4 applies. One finds that for fixed B € ¢/, ¢ > 0, the function
s — Py_sv(s, B), 0 < s < t, is differentiable and its derivative satisfies

d d

£(1Pt_sv(s, )(B)) = fa(lPrv(s, )(B))

By (IVP) and Lemma 3.3 (ii),

P (505, (B) = Pe_(@uls,)(B)

= > Y P (B,O)QC,V)u(s, V) = v(s,C)]

Ce Vew

d
= (Pyu(s,)(B))

(P (s, )(B).

r=t—

r=t—s

Thus d
7 (Pesv(s,-)(B)) =0,
which implies that the map s — P;_,v(s,-)(B) equals a constant on (0,t). It
follows that
P,v(0+,-)(B) = lsiF(JlIPt_sv(s’ )(B) =limPy_,v(s, )(B) = v(t, B),

st
where the first and last equality are a consequence of Lemma 3.2. Because of
v(0+, ) = h one obtains v(t, B) = P:h(B). m

Theorem 3.1. Let (T});>0 be a Markov semigroup on C(£") with infinitesimal
generator (A,9(A)) and let H be a real-valued bounded function on 2" x %
satisfying the condition

H(,B)e¥(A), Bed.

(a) Suppose that (Py);>0 is a continuous conservative transition semigroup
on % with infinitesimal characteristics Q. If (T});>0 and (P;)¢>0 are in
duality with respect to H, then

AH(vB)(n) = QH(TI’ )(B)’ ne 2, Be, (D_I)
is satisfied.

(b) Suppose that Q := (Q(B,C))p,cew Is a rate matrix satisfying (Q). If
Q and A fulfill condition (D-I), then the continuous conservative transi-
tion semigroup (PPy)¢>0 on % which is associated to Q and the Markov
semigroup (T3)¢>0 are in duality with respect to H. This is, the condition

TtH('aB)(T/) :IPtH(n?')(B)? ne %'a BE@, (D'S)
holds.
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Proof.
(a) By the definition of the infinitesimal generator, the limit

l 5 (TG, B)o) — Hn, B)) = AHC, B) (o)

exists for each B € % uniformly with respect to n € Z". Hence it follows from
(D-S) that

.1
i Y PUB,O)H,C) — Hy B)) = AHC,B)n)  (3:4)
Cew
exists for each B € # uniformly with respect to n € 2. Applying Lemma 3.1
with h(-) :== H(n, ) — H(n, B), where B € & is fixed, one obtains (D-I).

(b) If the condition (Q) holds for the rate matrix @, there exists a uniquely
determined continuous conservative transition semigroup (P;)¢>o on % with
infinitesimal characteristics Q. Let (D-I) be satisfied. Consider the function
v:[0,00) X # x Z — R defined by

v(t,Vin):=P:H(n, )(V), t>0,Ve# ne.
Since (P;);>0 is contractive and H € B(Z x %), one finds that
w(t,Vin)| < |[Hllw, t20, Ve, ne,

therefore v(-,-;n) € B([0,00) x &) for each n € Z". By Proposition 3.1, the
function v(-, -;n) is for fixed n € 2" the unique solution in B([0, c0) x &) of the
initial value problem

—vtV = > QV,O)p(t,C) —v(t, V)], V,Ce, t>0,
Cew
v(0+;V)=H(n,V), Ve, (3.5)

Define a function u : [0,00) X 2" x % — R by
u(t,m; B) :==T,H(-,B)(n), t>0,ne X, Be%.
Since (T})¢>0 is contractive and H € B(Z" x %), one finds that
lu(t,n; B)| < |H|loo, t>0,n€ 2, BEY,

therefore u(-,-;n) € B([0,00) x %) for each n € 2". Consider u(-,-; B) for fixed
B € %. For the Markov semigroup (7;);>0 and its infinitesimal generator A
the following equation is valid on ¥(A)

d
—T,=TiA, t>0
dtt t41, — Y
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see, for instance, [5]. Since H (-, B) € ¥(A), this yields
d
%u(tvan):ﬂAH(aB)(n)v t207 776%7 Be?.

It follows from (D-I) that, for each B € Y, the function n — QH(n,-)(B) is
continuous on 2, because AH (-, B) € C(Z"). Consequently, applying (D-I) to
the above equation yields

%u(tn, = (ZQBC C)— (-,B)])(n),tzo,ne%,Be@.
Cew

Now choose some sequence (%}, )nen, the #;’s being finite subsets of % which
satisfy %;, 1 % for n — oco. As T; is bounded, one finds

@ ufem:B) = =1 3 QB0 - H. B0
:Tt(nlggo > QB,O)H(.C)— H(,B)]) (1)
ce%,
= lim Y Q(B.O)LH(-C)(n) ~ H(n, B)]
Ce?,
= lim Y Q(B,O)[u(t,;C) —u(t,n; B)]
ce,
= > QB,O)ult,;C) —ult,m;B)], t>0,ne 2.
Cew

Observe further that w(0+,n; B) = H(n,B), n € 2. Since B € # can be
chosen arbitrarily, we obtain that the function u(-,7;-) satisfies the initial value
problem (IVP) for each n € 2. As the solution of this initial value problem is
unique in B([0,00) x &), it follows that

v(t,B;n) =u(t,n;B), t>0,ne X, Be¥.
This is (D-S). O

Remark 3.2. Actually, it is enough to require in Theorem 3.1 (b) that the rate
matrix @ and the semigroup (P:):>0 generated by Q satisfy condition (PQ).
However, if only Q) is given explicitly, it is often easier to verify that the condi-
tion (Q) is met.

Corollary 3.1. Suppose that (A;,9(A;)), ¢ € I, are Markov generators on 2,
where I is a countable index set. Assume that there is a set D C N;e;9(4;)
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with 1 € D which is a core* for each operator A;, i € I, such that the operator

A:D—C(Z): Af =) Aif°

iel

is a Markov pregenerator whose closure is a Markov generator.
Let H be a real-valued bounded measurable function on 2~ x % satisfying
the condition
H(,B)eD, Be%.

Assume further that there are Markov chains with infinitesimal characteris-
tics Q; which are H-dual to the Markov processes generated by A;, i € I. If

—00 < Q(B,C):=)Y Qi(B;iC)<oo, B CeY, (3.6)

i€l

and the corresponding Q-matrix® Q = (Q(B,C)p,ceca satisfies (Q), then the
Markov process corresponding to A is H-dual to the Markov chain on % with
infinitesimal characteristics Q.

Remark 3.3.

(1) Since each (A;, D), i € I is a Markov pregenerator, the operator A: D —
C(Z) : Af = > ,c; Aif satisfies the conditions (G1) and (G2) of §2.1
and is therefore a Markov pregenerator. It is not immediate, in general,
that (A, D) satisfies the condition (G3), as well.

(2) Suppose that A; and As are generators of IPS as defined in § 2.2 with cor-
responding families of transition rates (c(Tl)(o, ))res and (c(TQ)(', Nres,
respectively. Then D(2Z") C 9(A1) NI(Az) is a core for A;, ¢ = 1,2
and the operator (A4, D(Z")) is the pregenerator of an IPS with transition
family (cr(-,-))rer satistying cr(-,-) = cg)(~,-) + cg)(~,-). It is easily
checked that the family (cr(:,:))rer is admissible, if (c(Tl)(-, Nrez and

(C(T2 )(', ))res are admissible. Thus one obtains by following the argu-
ments in §2.2 that the closure of (4, D(Z")) is a Markov generator.

(3) Suppose that A is the generator of an IPS as defined in §2.2 with corre-
sponding family of transition rates (c¢r(-,-))res. According to (2.1), it
holds that Af = > ., Arf, f € D(Z), where Ay : C(Z) — C(Z),

4See [5, §1.3] for the definition of a core.

5The convergence is with respect to the supremum norm in c(2).

°Q(B) = YoxpQB.C) = YcuprierQ(B,C) = Y1 XcxpQi(B,C) =
> ier —Qi(B,B) = —Q(B,B) < oo, B € %, where the rearrangement in the order of sum-
mation is allowed because all summands are non-negative.
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T € 7 are bounded Markov generators that describe the local transi-
tions. Thus D(Z) C Upey Y(Ar) is a core for each Ap, T € 7, and
the operator (A, D(Z")) is a pregenerator of a Markov process. If the
local mechanisms A7 are H-dual to Markov chains on % with infinites-
imal characteristics Qr, T € 7, then the H-dual of A exists and has
infinitesimal characteristics Q = > ;¢ » Qr, if Q is well-defined in the
sense of (3.6) and satisfies condition (Q).

Proof of Corollary 3.1. By Theorem 3.1, the infinitesimal characteristics Q; of
the H-dual chains satisfy

AlH(vB)(n):QlH(nv)(B)v iEI, 7763?//7 Be%.
Hence

AH(B)(n) =Y _ AH(,B)(n) =Y _ QiH(n,)(B)

iel el

=>_ > QuB,C)(H(©,C)— H(n,B))
icl C#B

= Z ZQz(BaO)(H(nvc) - H(U7B))
C+#B el

=QH(n,)(B), neZ, Be¥.

The change in the order of summation is allowed since the series is absolutely
convergent. Indeed,

> > |Qi(B.C)(H(n,C) - H(n, B))|

iel C#B
<33 QuB.O)|HM,C) ~ Hn, B)| <23 Qu(B) < .
icI C#B iel

<2

Since the matrix Q) satisfies (Q), there exists a uniquely determined continuous
and conservative transition semigroup on ¢ with infinitesimal characteristics Q.
By Theorem 3.1, the corresponding Markov chain is H-dual to the IPS generated
by A. |

4. Duals of IPS

Now the results of Section 3 are applied to special IPS and special duality
functions H. Thereby it is illustrated that the criterion for duality which has
been developed above is indeed manageable for a variety of different interacting
particle systems. Note that the duality relations that will be derived in the
examples below have been asserted in the literature already. However the proof
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of these relations was either only scheduled or even omitted in the original
publication.

In §4.1 to §4.3, IPS with state space 2" = W* are considered, where W =
{0,1} and S = Z% with d € IN. Define

Tp:={TCS:|T| <o}, T:=\{0}.
For the duality function the following map H : 2" x Jy — {0,1} is chosen

H(n,B)::Hn(x), ne%,Be7, H(.0)=1. (4.1)
r€EB

Hence the state space of H-dual Markov chains is % := .. Obviously, H(-, B) €
T(Z) C D(Z) for each B € 9. Note that

H(n,B)=[[n(z) =1 < n(z)=1, z€B.
zeB

In §4.4-§4.5, the local state space W as well as the duality function H are
chosen to be more general.

4.1. Spin-flip systems

Spin-flip systems are IPS with single site space W = {0, 1} and admissible
transition rates ¢ = (cr(-,-))res satisfying er(n,{v}) =0, T € T, ne X,
v € Zr unless T = {z} for some z € S. For convenience, denote for n € 2,
x €S,

nm(z) — 77(2); Z 7& Z, ze 8,
1—n(z), z=u,
and
C(l‘, 77) = C{z} (777 {1 - 77(33)})
The corresponding Markov pregenerator A : D(Z") — C(Z") takes the form

Af(n) =Y clem)(f(n") = f(n), feD(Z), neZ.

zeS

As above, the Markov semigroup that is generated by A is denoted by (7})¢>0.

The results of Section 3 shall be applied to spin-flip systems where the
transition rates have a special structure, compare [9, §I11.4]. In detail, let
p: S x Jy —[0,1] be a map that satisfies

> pa,F)=1, z€Sb, (4.2)
FeJy

sup Z p(z, F)|F| =: k < 00.
zGSFeyw
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It is supposed that the transition rates ¢ of the spin-flip system take the form

c(a,n) =n)+ (1 =2n(x) > pla, )H@,F), ne 2, z€8 (43

Fe9y

Note that (4.2) guarantees that the family ¢ = (c(z,))zes is admissible [9,
§II1.4]. A rate matrix Q on .7 is specified via”-®

Z Z €, F 5FU(B\{£K})(C)7 B e ya Ce %7 B # C, (44)

zEB FEJ
and
Q(B,B):=-Q(B):==— > Q(B,C), Be%
cegp\{B}
One finds
QB)= > QBC= > > > pF)rus )
CeZy,C#B CeZy,C#B z€B FeJ
<> > n( =|B| <o, Be %,
z€EB FE9y

thus the matrix @ is actually well-defined. In addition, following [9, § IIL.4], one
obtains

Y. QBolc -8l

CeTy,C#B
=> > nl [[(B\{z}) UF|~|B]]
r€B Fegy
<> > p F)(F|-1) <kB|, BeZ.
xEBFEy@

Choosing 7, == {T' € J : |T| < n}, n € N, and ¢(B) := |B|, B € %,
the condition (Q) of §2.3 is satisfied. Hence the matrix Q generates a uniquely
determined continuous conservative transition semigroup (P;);>o on 7. One
easily verifies that A and Q satisfy condition (D-I). Indeed, with

(1 =2n(x))H(n, B\ {z}) forzeB,

H(n"”,B)H(T)aB){O for x ¢ B,

and
H(n,C)H(n,D)=H(n,CuUD), C,Dec %,

"The Kronecker symbol satisfies 5(C) = 1 if C = B and §g(C) = 0 otherwise.
8By convention, a sum taken over the empty set is zero.
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it follows from (4.3) that

AH(,B)(n)

=Y cla,n)[H@", B) = H(n,B)] = > c(x,n)(1 = 2n(x))H(n, B\ {z})
rEB rEB

=Y {(n@) + @ =20(@) 3 ple, FYH®,F)) (1= 2n() Hn, B\ {«}) }
zEB FeJy

= > @) (1 —2n(x))H(n, B\ {z})
zeB
+ > (1=2n()* > pla, F)H(n, F)H(n, B\ {z})

z€B Fey

=> > pla,F)[H(n, Fu(B\{x}) - H(n, B)]
z€B FE9

= Y Q(B,C)H(n,C)—H(n,B)l, ne %, Be%
CceTy

Hence the IPS generated by A and the Markov chain corresponding to @) are in
duality w.r.t. H.

Example 4.1. If one specializes

_Jo if |F| #1
Pl L) {p”(%y), if F={y}cCS5,

where pv is an irreducible stochastic matrix on S, then the rates in (4.3) take
the form

zn) =Y pU(@y)(ny) —n(x)’, xS ne. (4.5)

yeS

These are the transition rates of a so-called linear voter system. The infinitesimal
characteristics of its H-dual Markov chain on .9} are given by

=> > p@v)dumen(C), BeT, CeFy, B#C. (4.6)

zeEByeC

4.2. Symmetric exclusion processes

Symmetric exclusion processes fall into the class of spin-exchange processes.
The latter processes are IPS with W = {0,1} and admissible transition rates
¢ = (er(,,"))rez satisfying cp(n,{v}) =0, T € I, n € Z, v € Zr unless
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T = {z,y} for some z,y € S, z # y and v(z) = n(y), v(y) = n(x). For
convenience, denote forn € 2, z,y € S, x # v,

n(z), z# .y,
N (z) =< nly), z==, z €S,
n(x), z=v,

and

c(@,y.n) = cayy(n,{v}), where v € 2,y with v(z) :=n(y), v(y) :=n(z).

If the transition rates c(z,y,n) admit a representation c(z,y,n) = c(x,y,7n)
with

c(x,y,m) =p°(z,y)n(x)(1 —n(y), x,y€S, v#y, ned, (4.7)

where p® = (p°(x,¥))syes is an irreducible and symmetric stochastic matrix
on S with p¢(z,2) = 0, x € S, then the corresponding IPS is a symmetric
exclusion process. Note that the family of transition rates (c(z,y,-))s yes is ad-
missible, since, by the symmetry of p®, the condition sup,¢ g Y wes PC(,y) < o0
is satisfied [9, Ch. VIII]. The corresponding Markov pregenerator A°: D(Z") —
C(Z) takes the form

Af(n) = > pla,y)n@) (=) (f0™) - fm), feDZ), neZ.

z,yeS
(4.8)
Let
Q°(B,C):=>_ Y 1@, m)dp\(ahu(C), B,C €Ty, B#C,
ze€B yeC\B
Q°(B,B):=— Y Q°B,C), Be % (4.9)
CceTy\{B}

Then one has for B € 9, C € 9y, B # C, that
Q°(B,C) < > Y px,9)dyyum\ap(C) = Q°(B,C)
zeB yeC

and
Q°(B) <Q"(B),
where QY is the rate matrix of a linear voter system, see (4.6). This means that

Q° is a well-defined rate matrix which satisfies condition (Q2) for ¢(B) = |B|,
B € 9. Tt satisfies the condition (Q1), as well, since one finds that

B\ (=i} (O)IC] = B[] = 0 < [B],
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for B,C € 9 and z,y € S, x € B,y ¢ B. Now it shall be verified that A€
and Q¢ are H-dual, where H is the defined in (4.1). Using that

H(n™,B) = H(n,(B\{z})U{y}) forzeB, y¢B,

and applying the symmetry of p¢, one finds, following [9, § VIIL.1],

A°H(, B)(n) = > > p°(a,y)n(x)(1 = n(y)[H(n™, B) — H(n, B)]

zeSyes

= > > (@ y) (@) (1 = n(y) + n(y) (1 —n(x))]

x [H(n,(B\{z}) U{y}) — H(n, B)]
= Z ZPG(%y) [H(n,(B\{z})U{y}) — H(n, B)]

rEBy¢B
= > Q“B,C)H(n,C)—H(n,B), ne %, Be %
Ce%

The third equality follows from the fact that [n(z)(1-n(y))+n(y)(1—n(z))] =1
if n(x) # n(y). Thus A¢ and Q¢ satisfy (D-I) w.r.t. H. Consequently, by
Theorem 3.1, the symmetric exclusion process has an H-dual Markov chain
on Z with infinitesimal characteristics Q€.

4.3. Voter-exclusion processes

Suppose that (c’(z,-))zes and (c®(x,¥,))syes are the transition rates of
a linear voter system w.r.t. the irreducible stochastic matrix p¥ on S and of a
spin-exchange process w.r.t. the symmetric and irreducible stochastic matrix p®
on S, respectively, as defined in (4.5) and (4.7). The corresponding Markov
pregenerators are given by

A f(m) =Y 0 @ y)(nly) —n(@)*(F(n") = fm), neZ, feD),

zeSyeS

and

Af () =D P (@ ym(@) (1 = n)(f@™) = f(n), ne X, feDX),
€S y¢S

The IPS corresponding to A := AY + A¢ on D(Z") is called woter-exclusion
process”.
Let Q¥ and Q° be the infinitesimal characteristics of the H-dual chains

corresponding to AY and A€, respectively, as given in (4.6) and (4.9). Both

Isee [7].
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AY, QY and A°, Q° satisfy (D-I) with respect to the duality function H given
n (4.1). Since Q" and Q° meet condition (Q) w.r.t. the same function p = |- |,
one finds that @ := Q" + Q¢ satisfies (Q). Thus Corollary 3.1 applies. It follows
that A and @ satisfy (D-I) with respect to H. Hence the Markov chain which
is H-dual to the voter-exclusion process has the infinitesimal characteristics

QB,C)=>_> " (p"(x,y) + (2, 9)Lse (v)) 5B\ {ohuin} (C)

reEB yeC

for B Jy, C € Jy, B #C.

4.4. Symmetric two-particle exclusion-eating process

The symmetric two-particle exclusion-eating process was considered in [10].
It is an IPS on 2" = W* with W := {0,1,2} and S a countable set, where only
transitions 7 — 7Nu—y, 2,y € S, T # y, have positive rates. These transitions
are defined for z,y € S, x # y by

n(2), if 2 ¢ {x, y},
Neoy(2) == ¢ n(x), if z =y, z€S.
min {2n(y),n(x)}, if z ==,
Suppose that p is a symmetric irreducible stochastic matrix on S. Then the

generator of the two-particle exclusion-eating process is given by the closure of
the operator

Afm) =D (1= o)) (1 = Gyiay (@) P, Y)(f (e—y) — (1)),

where f € D(Z),n € 2. Forn € Z and z,y € S, z # y with n(z) # 0,
n(y) # n(x), it holds that

n™, if n(y)

= ()7
n®, ifn(y) #0

with exclusion transformation
n(z), if 2 ¢ {z,y},
N (z) = {nx), ifz=y, z €8,
n(y), ifz=uz,
and spin-flip transformation

T\ . n(z), if z # z, .
n*(z) = {3—77(30)7 7, €s.
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Consequently, the operator A can be decomposed into the sum A = A; + A,
where

Acf(m) =YY (1= 0(n(x)))o(n(y))p(x, y) (f(1™) = f(n))

zeSyeS

and

Aof(n) = 37 37 o (n(@)n)p(a, ) (F (") — £(n)

zeSyes

forn € 2, f € D(Z). It is easily verified that both A; and Ay are IPS-
pregenerators of the form (2.1), each one with admissible transition rates. There-
fore, compare Remark 3.3 (2), the closure of A is indeed a Markov generator
in C(Z).

Now choose % := {C = (C4,C3) € Ty x Ty : C1 C C3} to be the state space
of the dual Markov chain. The duality function H|Z x & — {0,1} shall be
given by

B):= [] 62(n(@)) [T (1 =&(n(y)). ne 2, B=(Bi.B)e?.
r€B; yE B>y
(4.10)
Obviously, H(-,B) € T(Z), B € #. Two rate matrices Q1, Q2 on # are
defined by

Z Z 7,Y)0B,\ {z}u{y} (C1)0B,\ {z}u{y} (C2)

r€B1 y¢ Bo

and

Z Z (2,9)0B, (C1)0B,\ {2}u{y} (C2),
x€B2\B1 y¢ B2
where B = (B, Bs), C = (C1,Cs) € #, B # C.
From [10, Lemma 2.1] one has that (Dg) holds for a symmetric two-particle
exclusion-eating process and a Markov chain on % having the infinitesimal
characteristics Q := Q1 + Q2, that is

(A1 + A2)H(-,B)(n) = Y (Qi + Q2)(B,C)[H(n,C) — H(n, B)],
Cew

forne 2°, B,C € #. To conclude that the semigroup duality relation (D-S)
holds, one has to show that @ satisfies the condition (Q). To prove this, con-
sider Q1 and Q2 separately. With Q;(B) := > o5 Q(B,C), B ¥, i=12,

one finds that
< Y play) < 1B,
rEB1 y¢ By
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and

QB)< > Y play) < |Baf—|Bl,

x€B3\B1 y¢B>
for B = (Bl,BQ) € % . Therefore Q(B) = Ql(B) + QQ(B) < |BQ|, B =
(B1,B3) € . Because of |[B\ {z}U{y}| = |B| for Be J, x € B,y ¢ B, it
holds for ¢ = 1,2 that Q;(B,C) =0 for B = (By, B2), C = (C1,C2) € % with
|C3| # |Bz|. Hence

3" Q(B,C)(|Cs| ~ |Bs]) =0, Be.
Cew

Choosing now %, := {C = (C1,C3) € ¥ : |C2| < n},n e N,and ¢ : ¥ —
[0,00) : ¢(B) :=|Bs|, B = (B1,B2) € %, one finds that (Q) is satisfied.

This shows that the Markov chain generated by Q is H-dual to the symmet-
ric two-particle exclusion-eating process. These arguments complete the proof
of [10, Theorem 2.7].

4.5. Lattice gas with energy

In [12], Nagahata studies IPS in 2 := W2", W :={0,1,...,M}, M,d € N,
where transitions n — n* Y and n — n™¥ are considered that are given by

77(35) - ]-7 zZ=,
() = nly) + 1, 2=y,
n(2), z ¢ {z,y},

and

77(21)7 2=,
1 (z) = g nle), 2=,
n(z), 2 ¢ {z,y},
z,y € Z% x # y. These transitions shall occur with rates Cye(n(z)) and

Cer(n()), if 2 and y are neighboring lattice sites, that is |x — y| = 11°. The
transition rates Cye, Cey 1 Z¢ — [0, 00) are given by

098<k) = Cge(k)]l[Q,M](k)v Cex(k) = cex(k)(1 —00(k)), keW,

where cge, Cex : W — (0, o0) are specified in advance.
It is easily checked that the linear operators Age, Aep : T(Z) — C(Z)
defined by

Agef(n):= Y dulle = y))Cye(n(@)) (@)L, p—1y () (f (17 7¥) = f(n),

x,yceZa

1 — /N~d
OHere |z| := ¢ 22,z ezl
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and

Acaf(n) == > 81(|z = y)Cea(n())d0 () (f (™) — f(n)),

z,y€Z

feT(Z),ne Z,as well as the sum A := Ay + Ae, are Markov pregenerators
in C(Z") whose closures in C(Z") are Markov generators.

According to Nagahata [12], the associated Feller process is called a lattice
gas with energy. It is thought as a model of the time evolution of a gas con-
sisting of particles with several energy levels. For n € 2",z € Z¢, n(z) = 0 is
interpreted as ‘site x is vacant’ and n(x) # 0 as ‘there is a particle on the site
x with energy level n(z)’. A particle at site © moves with rate c..(n(z)) to a
nearest neighbor site y if y is vacant. A unit of energy of the particle at site
x is transferred to a nearest neighbor particle at site y with rate cge(n(x)), if

n(y) <M.
The dual chain shall act on the state space % of %M defined by

Y ={(B1,...Bu) € F" :B;jNBL=0, j#Fk, jk=1,..,M}.
Define H : 2" x % — {0, 1} by

M
Hn,B):=[] [] 6:n(=), ne 2, B=(Bi,...Bu)€¥.

i=1 z€B;

Obviously, for each B € ¢/, it holds that H(-,B) € T(Z") Cc C(Z).
One checks easily that

H(n*7Y,B)=H(n,B"%) and H(n*Y,B)=H(n,B"Y), neZ, Be¥,
where, for B € &,
B* 7Y = (By,...,Bi-1 U{z},B; \ {z},....B; \ {y}. Bj1 U{y}, ..., Bu)
ifreB;,yeB;,2<i<M,1<j<M-—1, and B*~Y := B otherwise; and
B*Y := (By,...,B;\ {#} U{y}, Bit1,...,Bum)
if v € By, y ¢ UM, B; and B®Y := B otherwise. It follows that
Ao H(B)(n) = Qo H(n, )(B), and A H(B)(1) = Qe H(n,)(B),

(4.11)
neZ,B e, if one chooses

M M—-1
Que(B.C):=>" > > > dillx = y)Coe(i)ms—=(C)

i=2 z€B; j=1 y€B;
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and

Qe.(B, C) Z > Y. Sulle = y)Cea(i)opan(C),

i=1l z€B; yeuUM (Cp\By)

B,Ce%,B#C. Let

Qge(B) == —Qqe(B,B) := > Qque(B,C), Be%,

Cew
and
Qez(B) = _QGI(B7B) = Z Qew(Ba C), Bew.
Cew
With
IB| := Z|Bk B=(Bi,..,By) e,
one finds
[B*Y| = |B™Y| = |B|. (4.12)
Therefore

M M
0<Que(B) <> Cy ZZZ (2 = y)
=1 €B; j=1 yeB;
M
< 2dM ) Cye(i)|Bi| < 2dMCy|B|, (4.13)

i=1
where Cp := max {Cye(?),1 <7 < M}. In a similar way, one obtains
0< Qge(B) < 2dCl|B‘7 (414)

where C; := max {Ce.(7),1 < i < M}. Hence Qg4 and Q., are rate matrices.
Because of (4.11), Qge, Qecz and the sum Q = Qg + Qe are H-dual to
Age, Aez and A, respectively. In particular, it holds that

AH(»B)(U):QH(%)(B)» nez,Be?.

Both Qge and Q., satisfy the condition (Q) with respect to the same function
¢ : % — R. Indeed, let %, := {B € % : |B;| <n,1 <i< M}, nelN, and
define p(B) := |B|, B € #. Then the sets %, increase to % with n — oo
and (QO) is satisfied. Condition (Q1) is easily checked using (4.12) while (Q2)
follows from (4.13) and (4.14). Thus, by Corollary 3.1, the Markov chain defined
by @ is non-exploding and H-dual to the IPS generated by A.
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