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Abstract. For a large class of interacting particle systems (IPS) on the d-
dimensional square lattice a criterion for reversibility of measures is derived.
It is shown that a reversible measure exists if and only if the local processes
which the IPS consists of are reversible w.r.t. the same measure. This result is
translated into constraints that are put on the family of conditional probabilities
of the reversible measure. For spin processes as well as more complex composite
IPS a necessary and sufficient condition for the existence of reversible measures
is proven and it is shown that the reversible measures coincide with the Gibbs
measures corresponding to a specification that is constructed directly from the
transition rates.
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1. Introduction

Interacting particle systems (IPS) model the temporal evolution of spatially
extended systems that consist of many locally interacting entities. We consider
IPS that are Feller—Markov processes on some configuration space X = W5,
where W is a finite set and S = Z% is the d-dimensional square lattice, d =
1,2,... The dynamics of these IPS is given by a transition mechanism that can
be interpreted to be the superposition of many local or microscopic transitions.

We call an invariant measure v of a given IPS globally reversible, if the IPS
started in v is time-reversal invariant (Definition 2.14). This property follows
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from the slightly stronger property of local or microscopic reversibility of the
measure v. The latter means that each of the local transition mechanisms is
time-reversal invariant with respect to v (Definition 2.15).

Originally, IPS were introduced to analyze equilibrium problems in statistical
physics, in particular to get a better understanding of the phenomenon of phase
transitions for Gibbs measures. For that purpose, IPS were studled that are lo-
cally rever siblé with 1espect to a given family of Gibbs measures [5,6,8;10-12,20].
Since Gibbs measures are random fields which are described via spec:1ﬁcat10ns
and interaction potentials [9], the transition rates of the so-constructed IPS are
naturally related to a specification or a potential given in advance. Thisrelation-
ship between the transition mechanism of the IPS and the potential manifests
itself in the detailed balance equations.

It has become clear in the meantime that interacting particle systems are
interesting models in their own right. They may be successfully applied when
one wants to describe non-equilibrium behavior. In this case, one specifies the
transition rates of an IPS according to the underlying concepts of the local
dynamics, but often without connection to a potential. For an analysis of the
long-time behavior, the set of invariant measures should be described. So it
is natural to ask, under which conditions a given IPS has globally reversible
measures and whether one can further characterize them. However, if transition
rates are given which are not constructed from a potential and if one does not
succeed in guessing such a potential, the standard detailed balance equations
are of no avail in the search for globally reversible measures. Thus there is
a need for a method which applies to those situations where no potential is
given in advance. Note that this problem is in some respect inverse to the
original approach, since now the transition rates are the starting point and (all)
random fields which are globally reversible with respect to this dynamics shall
be determined.

We develop a reversibility criterion for a very general class of IPS. We show
that under very weak additional assumptions local reversibility is a necessary
condition for a given IPS to be globally reversible (Theorem 3.1). The resulting
system of local reversibility conditions can be translated into requirements on
the family of conditional distributions of a candidate measure, which lead to a
system of generalized detailed balance equations (DB) (Corollary 3.1). Thus we
can show that the existence of a globally reversible measure is equivalent to the
solvability of the system of generahzed detailed balance equations in the set of
probability measures.

As mentioned above, it is already well-known that the condition of detailed
balance (DB) is sufficient for global reversibility. However, the question whether
(DB) is also a necessary condition for global reversibility was not yet consid-
ered in full generality. Corresponding statements were derived only for spin-flip
processes [14, Prop IvV.2.7] and partmle jump processes [8 Lemma (2. 15)]



Gibbsian characterization for the reversible measures of IPS 443

The system of generalized detailed balance equations that we derive is for-
mulated in terms of the transition rates only. This allows to decide on the
existence of globally reversible measures by looking on the solvability of (DB).
in the set of probability measures. This solvability essentially comprises two
conditions: :

(1) Each local transition mechanism is reversible.

(2) The system of solutions of the individual detailed balance conditions can
be composed into a probability measure with according conditional distri-
butions.

Since the local mechanisms are Markov chains with finite state space, it is
typically not too hard to check (1). To satisfy condition (2), it is necessary
that the system of individual solutions is consistent. In this case however, the
system of solutions can be understood as subfamily of a specification. Under
fairly natural continuity and positivity assumptions, such a subfamily can be
extended to a Gibbsian specification. This extension is unique, if the subfamily
is sufficiently large. See [2] for details in the case of one-point families and [3]
for more general results. If the transition rates are given, then their continuity
and positivity properties are inherited by the conditional distributions of any
measure v which satisfies the detailed balance condition. Thus any solution
of (DB) and consequently any globally reversible measure is a Gibbs measure,
when the appropriate assumptions on the continuity and the positivity of the
transition rates are imposed.

We apply our method to the example spin processes, which are IPS where
at an event only the state at one lattice site changes but a finite number of
states is allowed at each fixed lattice site, and then to some more complex
IPS. Thereby we contribute manageable criteria for the existence of globally
reversible measures. Spécializing our results to the well-studied class of spin-flip
processes, we supplement the results in [14, §IV.2] with a necessary and sufficient
condition for the existence of globally reversible measures which involves only
the family of transition rates of the given IPS. Note that these findings are
in agreement with the results of Mu Fa Chen and coworkers [1], where the
global reversibility of spin-flip processes is studied with the help of so-called
potentiality.

For translation invariant IPS, Maes, Redig and Verschuere [15, 16] studied
the question whether there are locally reversible measures. They introduced the
concept of mean entropy production MEP (p, c) for a given translation-invariant
invariant measure p of the IPS with transition rates ¢. They could show that the
mean entropy production MEP(p,c) vanishes if and only if p and c satisfy the
generalized detailed balance condition, which is equivalent to local reversibility.
Our work complements their results in several aspects. Firstly, since we have
shown that local reversibility is necessary for time-reversal invariance, one can
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conclude now from their results that MEP(p,c) vanishes if and only if p is
globally reversible. Secondly, the mean entropy production MEP(p,c) is an
asymptotic quantity which is obtained from a thermodynamic limit procedure,
while our approach to analyze under which conditions the system of detailed
balance equations is solvable in the set of probability measures leads to local
criteria for global reversibility. Thirdly, their methods apply to translation-
invariant IPS, while for our findings no translation-invariance is assumed.

2. Preliminaries

2.1. Configuration space

Let S := Z% d > 1, be the d-dimensional square lattice and take the sym-
bol T for the set of all non-empty finite subsets of S. For singletons in 7~
we usually write x instead of {z}. Further fix some n € N,n > 2, and put
W :={0,1,...,n—1} equipped with the discrete metric and the Borel-o-algebra,
W := B(W) (which coincides with the power set of W). Let A denote the uni-
form distribution on (W, W), it shall be our reference measure on W. Take
the configuration space X := W as the state space of the Markov processes
that shall be studied. The space X endowed with the product topology of the
discrete topology of W is compact and metrizable. It shall be equipped with
the Borel-o-algebra F := B(X). Let (X, F) denote the set of probability
measures on (X, F).

For each T C S, the set S\ T shall be denoted by 7°, X7 = W7T will
represent the configuration space over 1" and

mr : X — Xp :mr(n) i= (0())zer =: 7

denotes the projection from X onto Xp. We write Fr for the o-algebra

Fr = o(mr) = w;1(® W)

zeT

and introduce
CT = .7:5\'_1".

Definition 2.1.

(1) Suppose that £ C F is a o-field. A function ¥ : F — £ is a selection
homomorphism for £, if U(B) =B, B€ €.

(2) A family € = (Er)rer of o-fields Er C F is called appropriate if the
following conditions are satisfied:

(a) Cr Cér, T €T,
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(b) Er, D Ep, for any Ty, Th € T with Ty C Ty;

(c) there exists a compatible family (U7)rer of selection homomor-
phisms for €, i.e. U is a selection homomorphism for Ep, T € T,
and Up, o Uy = U, for 17,75 € T with T7 C 1.

Remark 2.1.

(1) The family (Cr)rer is appropriate.

Indeed, define ¥ := 7 Lo 7p, where
mr(A) = {nr(n) :n € A,}’ " TeTl.

Then U is a selection homomorphism and U, oWy, = U, for 17,15 € 7
with T C 1.

(2) Define

NE:X —R:Nf(n) =Y L '(w)}m), neX,
zeT ’

where 1{A} is the indicator function of a set A € F. Then the family
(Er)rer with &7 = o(NE, 7y t w € W,V C T°) is appropriate.

Indeed, for T' € T, define

Up(A) i=ngplompe(A)n () (NF) "o NE(4), AeF.
weEW '

Then U(A) € &p, A € F, and VU, o U, = Up, for 71, Ty € 7 with
Ty C Ts. ‘ )

For u € X7, n € X, let 70(n,u) be the configuration where nr is replaced
by u, that is )
(z), zeT¢

(z), zeT. 1)

(7, w)(2) = {”

U

By C(X) we denote the set of continuous real functions on X equipped with

the sup-norm || - ||. We write C(X, .A) for the linear space of all . A-measurable

continuous functions, where A is some sub-o-field of F, and we use the short-

hand Cr(X) for the linear space of all Fr-measurable continuous functions,

T € T. Let T'(X) = Upeq Cr(X) denote the set of all so-called local functions.

Note that C(X) is the uniform closure of T'(X). Given f € C(X), we define
with

tm(f) = {z € S : sup{|f(n) = SO : M= = Coe} > 0}

the support of f. One easily checks that f € T(X) < tm(f) € 7.
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For £ e X,T € T, put

1{ér} := U{nz' (&)},

where 1{A} is the indicator function of a set A € F. Further define 1{ng}:=1,
n € X. With slight abuse of notation we will use the same symbols for the
corresponding indicator functions on Xa, A D T'. Let

Er(X):={1{¢r}: €€ X}, TeTu{h}

and set .
EX):= (] Er(X),
TeTUu{d}

the set of simple functions. We observe that Cr(X) is the linear hull of E(X),
that is Cr(X) = span Ep(X), T' € 7, and

T(X)=span(EX))= | ] ov(X), TeT
. VeT, VDT

Further, given f € C(X), v € 2(X), we denote

v(f) = /fdu.

Definition 2.2.
(1) Given v € Z(X, F) we denote by

supp (v) := {n € X: v(Us(n)) >0 forall § > 0}

the support of v. Here Us(n) is the open ball in the metric space X with
center n € X and radius § > 0.

(2) ve P(X,F) is called dense, if supp(v) = X.

Proposition 2.1. Suppose that A € (W, #(W)) is the uniform distribution
on W,

(1) The measure

A\S :=®)\

€S

is dense.

(2) A sufficient condition for a measure v € P(X,F) to be dense is that
M < vonFrforalTeT.
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(3) Ifv e P(X,F) is dense and f € C(X), then f = 0 (v-a.s.) implies that
f=0.
Proof.

(1) Fix n € X, § > 0. Since Us(n) D w5t (nr) for sufficiently large T and
M (npt(nr)) = )\T(nT) > 0, we find that 1 € supp (A\5).

(2) We find that v(A) > 0 for any A € UperFr with A # 0 since A5(4) > 0
for those sets. Hence v is strictly positive on the cylinder sets. Further for each
n € X,6 > 0 we have Us(n) D 5" (nr) for sufficiently large T'. Therefore v is
dense. :

(3) Suppose that f(n) > a for some n € X and a > 0. Then, by continuity of f,
there exists a § > 0 such that f({) > a/2 > 0 for all { € Us(n). But since v
is dense, we conclude that v(Us(n)) > 0 which contradicts the property f = 0
(v-a.s.). 0

2.2. Gibbs measures

Definition 2.3. A family v = (yr)re7r of maps vyp : F x X — [0,1] is called a
specification, if

(1) vr(-,n) is a probability measure on (X, F) foralln € X, T' € T;

(2) yr(A,-) is Cr-measurable for all A € F, T € T

(3) (vr) is proper, i.e. yp(ANB,:) = f)/T( J1{B}, A €eF,BelCr,TeT;
(4)

4) (vyr) is consistent, i.e. ypyy = vy for all T,V € T, T C V, where

yryv(4,m) = /’YV(A,C)VT(dC,n), neX, AeF.

Further define the set of all probability measures on (X, F) Which are specified
by v via

G(y):={vePX,F):v(A|Cr) =vr(4A,) (vas), AcF, TeT}.
Given some subfamily v° = (yr)rez, where Tg C 7, we set
G (y°) = {»1/ eP(X,F):v(A|Cr)=~r(4,") (vas.), AcF, T €Ty}

Remark 2.2. Replacing the o-fields Cr in the above definition by the o-fields Er
of an appropriate filtration € = (Er)rer of F, the concept of a specification is
generalized to that of an €-specification v&. If, for instance,

Er =o(nmpe, Np :weW), TeT,

then the measures which are specified by v% are canonical (Gibbs) measures.
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Given a specification v = (v7), a measurable function fandaset T e T,
let us denote by yr f the measurable function that is given by

wﬁmw=/f@wwam,nex.

Similarly, define for v € & (X,F), T €T, the probability measure vyp by

mﬂm:/wmmwmerﬁ

Definition 2.4.
(1) A specification v = (vr) is called positive, if

yr(rzt(w),n) >0, veXp, neX, TeT.

(2) A specification v = (yr) is called continuous or quasi-local, if, for each
T €7, f € C(X) implies that v, f € C(X). '

Proposition 2.2.

(1) If some specification + is positive then, for each T' € T, any two measures
v, b € ¥(v) are mutually absolutely continuous on Fr. In addition,

v € 9(y) and A5 are mutually absolutely continuous on Fr for each
TeT.

(2) If some specification v is positive, then any v € ¢(v) is dense.

Proof.
(1) [9, (1.28)(2)]

(2) It follows from (1) that AS <« v on Frp for any T' € T. Together with
Proposition 2.1 (2) the assertion is proven. O

Definition 2.5.
(1) A family ® = (®4)ae7 of functions 4 : X — R is a potential, if both of

the following properties are satisfied:
(a) Foreach A e T, the function ® 4 is F4-measurable.
(b) For any A € T, € X, the net
HY(n):= ) ®a(n) (2.2)
. A€T,
ANA#D

converges,
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(2) A potential is called uniformly convergent, if for all A € 7 the convergence
in (2.2) is uniform with respect to n € X.

(3) A potential is called absolutely summable, if 3 4cr 45, SUPnex |®4(n)] is
finite for all z € S. 4

(4) A potential is said to be of finite range if for all z € .5 ther‘e; exists a set
A, € T such that &4 =0 for any A > z unless A C A,.

Definition 2.6. A specification is said to be Gibbsian, if there is a uniformly
convergent potential ® = (®4)aer such that v =~%, where

A& (rpt(w),n) = (Z8(n) " exp{ - HE(rr(n,w))}, weXr, neX, TeT,

and

ZEm) = Y exp{ - Hy(rr(n,u)}, neX, TeT.
ueXp

The normalizing factor Zélf is called the partition function.
Any measure v € ¥(v) that is specified by the Gibbsian specification v is
called Gibbs measure (w.r.t. ).

Specifications describe random fields on Z%. But considering the consistency
condition in Definition 2.3 (4), one finds that they are ‘too rich’, i.e. they con-
tain redundant information. In the following we address the question whether
already a family (v;)zes specifies a random field on Z%. We refer to the work
of Dachian and Nahapetian [2] where most results that are relevant here can be
found. Note that there are several more recent papers such as [3] and [7], where
generalizations of the stated criteria were derived. '

Proposition 2.3. Suppose that v = (yr)reT IS a specification.

(1) If v satisfies vz (A4,n) > 0 for each z € S, n € X and each atom A of Fy,
then «y is positive and any v € ¥ () is dense.

(2) If vo(mzt(v),) is positive and continuous for any x € 5, v € W, then vy is
pos1t1ve and continuous. In addition, it holds that

0£Y(y)={ve P(X,F): V=Y, z €S}

Proof.

(1) We show that v{z,y}(A,n) > 0 for each z,y € S with z £y, any n € X and
each atom A of Fiz 1. Then it follows that - is positive by induction over the
size of T and, by Prop. 2.2 (2), any v € ¢(7) is dense.
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Since vy is proper and consistent and since y(¢,y} (-, ) is C{,y}-measurable in
the second argument, we have for any u,v € W, :

V) (5 (W) N7t (v), )

o

does not depend on the coordinate at y
= Yo} (77" (u) nmy, (), 7y () = V) Ve (17 (1) ﬂW Hv), 7y ()
c
€C.

= Y{z,y} (]1{7‘—3—/_1('”)}:)'33 (Wm—l(u)"ry("v)) )

4

~
C{a,y)}-measurable

')’a:( 1(u)va(' U))'Y{m,y}(n{ﬂgl(v)})
Yz ( l(u))T ( U))’Y{:r,y}( —1(’0) )
Yz ( ( )s Ty( ”))’Y{z,y}('Yy( ( )s ))

Since v, (75! (w), 7y (,v)) and vy (m; 1(v), ) are positive by assumption, it
follows that

V) (151 (W) N7 (v),) > 0.
(2) Define

Pm'(ﬂ) = Yz (7";1(77(33))’77) ’\(77(117)), x €S, neX.

Then p, is continuous and thus, since X is compact, bounded and uniformly
positive. Now let T € 7 be the union of two disjoint sets 77,75 € 7 and
suppose that continuous functions pr,, pr, have already been constructed which
are continuous as well as bounded and uniformly positive. We define

Py
)‘Tl (pT1 /pTz)

br =

Since (Ar) is an independent specification, we find that Ar, (pr, /pr,) is contin-
uous since pr, /pr, is continuous. Hence pr is continuous as well as uniformly
finite and positive. As was proven in [9, Theorem (1.33)], the functions which
are constructed this way satisfy yr = prAp, T € 7, thus 7 is continuous.

The equality 9(v) = {v € (X, F) : v = vy, € S} was also derived
in [9, Theorem (1.33)]. What is left to show is that ¥(y) # 0. But this follows
from [9, Theorem (4.22)], since A is finite and all pr’s are bounded. D

Definition 2.7. A specification v = (yr)re7 is said to be a vacuum speczﬁca-
tion (with vacuum 0) or weakly positive if

vr(731(07),() >0, TeT, (X,
where 0 € X is defined by 0(2) =0, z € S.
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Note that any positive specification is a vacuum specification.
Definition 2.8.

(1) A family p = (pz)zes of (X, Cz)-(W, W)-probability kernels is said to be
consistent, if for any z,y € S and ¢ € X with {(z) = ((y) = 0 the following
property is satisfied: ' :

p=(¢, U)Py(’fa:(C, V), U) Pz (Ty (¢ u), O)?y(C: 0)
= Dy (¢, u)pe (Ty(Ca u), U)py(Tm (¢,v),0)pz(¢,0).

(2) A family 4° = (7z)zes of proper (X, Cz)-(X, F)-probability kernels is said
to be consistent, if the related family p = (p;)zes defined via

pe(Cu) == Yo (n; H(w), (), ze S (eXueW,
is consistent.

Definition 2.9. A family v° = (72)zes of (X, Cz)-(X, F)-probability kernels
is said to be a one-point specification, if there exists a vacuum specification
% = (57)rer such that 70 is a subfamily of 7, i.e. vz = ¥z, z € S.

Proposition 2.4. A family v° = (v2)zes of proper (X, Cz)-(X, F)-probability
kernels is a one-point specification if and only if it is consistent.

Proof. Apply [2, Thm. 3.4] to the family

h = {hg(v) cxe S, ¢ e X with {(z) =((y) =0,ve W},

where

p2(C,v)
Pm(C,O)’

RS (v) = zes, (eX, veW

Proposition 2.5. Suppose that v° = (7;)zes Is a one-point specification.

(1) If+° is continuous, that is if f € C(X) implies v, f € C (X) for any x € S,
then
G ={ve PX,F):vy=v, T€ S} #£0.

(2) If y° is positive and continuous, then there Is a unique continuous pos-
itive specification which contains ~% as a subfamily. Further, the equa-
tion 4(y°) = ¥(v) is satisfied and there exists a uniformly convergent
(vacuum) potential, such that -y is Gibbsian with respect to this potential.
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Proof.

(1) When +° is a continuous one-point specification, there exists a vacuum
specification v which contains ¥° as a subfamily and is continuous as well,
see [2, Thm.4.1] and its straightforward generalization to arbitrary finite W.
Following [4], we find ¥ (v) # 0. Since 4(+°) D ¥(v), the assertion is proven.

(2) Since 7% is a one-point specification, there exists a vacuum specification =y
which contains v° as a subfamily. Using the fact that v° is positive, it follows
- from [9, Thm. (1.33)] that « is positive, uniquely determined by v° and 4(v) =
%(+%). The existence of a uniformly convergent vacuum potential ® such that
v = % is deduced directly from [9, Cor. (2.31)]. O

Proposition 2.6. For each v € P(X,F), there exists a specification 7¥ =
(v4)TeT such that

v(A|Cr) =v7(4,-) v-as., AeF.

Proof. We apply [18, Thm.3.3]: S is a countable set and W is finite, hence
F = @, es YV is countably generated and standard Borel. Thus any prob-
ability measure v € (X, F) is perfect in the sense of [18]. Since (Cr)rer
is an appropriate filtration of F, there exists a compatible family of selection
homomorphisms. O

Remark 2.3. The statement of the above proposition remains true if (Cr)rer
is replaced by an appropriate filtration € = (€r)rer of F. The corresponding

E-specification is denoted by v&¥ = (7$’V)T€T.

2.3. Interacting particle systems

Interacting particle systems (IPS) are Markov processes with.state space X.
They are described by defining the dynamics within finite sub-volumes of S
(local dynamics) via families of transition rates. More precisely, for the current
configuration n € X and fixed T' € 7, a transition involving the coordinates
in T is described by 77(n,u), where u € Xp is the new (local) configuration
that is observed within 7" after the transition has taken place (cp. (2.1)). The
rate at which this transition occurs shall be specified by some transition rate

CT(U, ’LL)

Definition 2.10. Suppose that we are given a family ¢ = (cr)rer of non-
negative functions er : X X Xp — [0,00). If, for each u € X, the function
cr(-,u) is continuous, then ¢ is a family of transition rate functions.

Sometimes it is more convenient to use the following notation,

er(n,u,v) := cer(rr(n,u),v), w,veXgp, TeT, £€X
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We define

CT(x) = sup {1CT(777U) - CT(<7U)| M zYe = C{m}‘}) zes, Te Ta

and
cr 1= sup Z er(mu), TeT.
neX uEX T

Definition 2.11. Denote

To:={T €T :supcr(n,Xr) >0}
neX

and suppose that 7o # 0. A family ¢ = (cr)rer of transition rate functions is

(1) admissible, if

sup Z er < 00, (2.3)
‘TESTB:E
and :
sup z Z er(z) < oo; (2.4)
mESTam z#x '

(2) finite, if for any z € S there is a set T, € 7 such that V' C T for any
V e Ty with V 3 z;

(3) local, if cp(-,v) € T(X), T € 7o,ve Xr;
(4) translation invariant, if
CT(T]7 U’) = CQyT(G'yTl) u))

where 0,7 := {z +y:z € T} and yn(z) = n(z —y), z € S and y € 5,
neX,TeT; '

(5) of finite range, if it is translation invariant and if there is & R € R such
that, for any T' € 7y,

z—y| <R, zyeTuU |J tmer(,w).
UEXT

Remark 2.4. We have that (2), (3), (4) & (5) = (1).

Definition 2.12.

(1) A family of admissible rate functions is standard, if, for any T' € 7y, n € X,
it holds that ¢z (n,v) = 0 for any v € Xy with v(z) = n(z) for some z € T.
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(2) A family of admissible rate functions is positive, if, for any T € Ty, n € X,
it holds that e (n,v) > 0 for any v € X with v(z) # n(z) for somez € T

(3) A family of admissible rate functions has got the two-way communication

property (twc), if, for any T € Tp, n € X, it holds that cr(n,u,v) > 0
& er(n,v,u) > 0.

(4) A family of admissible rate functions is irreducible, if, for any T € Ty,

n € X, it holds that (cr(n, u,v))u,vex, is an irreducible transition matrix
on Xr.

Suppose we are given a family ¢ = (cr(:,-))rer of admissible transition
rates. We define an operator A : T'(X) — C(X) by

Af(m) =Y Y erm)[f(rr(n,0) = f(m)], neX, feT(X).

TeT veXr

By [14, Prop.1.3.2], A is well-defined if ¢ is admissible. Further, according
to [14, Thm.I.3.9], the closure of A is a Markov generator which generates a
Markov semigroup (T3;):>0 on C(X). The corresponding Markov process with
cadlag-trajectories is called interacting particle system (IPS).

Note that A can be interpreted as the superposition of local operators Ar:
C(X) — C(X), where

Arf(m) = Y er(mv)[f(rr(n,v) — f(n)], neX, feC(X),

vEXy
ie.
Af = Arf, feT(X).
TeT
It is easily checked that A is bounded for each T' € 7. Further we find that
> lArfl < Clfll, e T(X), (2.5)

TeT

for some constant C > 0, cp. the proof of [14, Prop.1.3.2].
For fixed T € T, the operator A7 can be regarded to be the Markov generator
of an IPS which corresponds to the family of transition rates & = (év )y e where

év(n,u) = {CT(U’U)’ V_T’_ neX, uveXrp, VeT.
0, otherwise,

The family ¢ is admissible when ¢ is admissible, therefore the operator Az is

a Markov operator. Given an initial configuration 7, the IPS that is gener-

ated by A7 only changes the configuration within the finite sub-lattice T while

the configuration that is seen in T remains unchanged. Therefore Ar can be

interpreted to specify the local dynamics within T' given a so-called external
condition nre.
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Definition 2.13. For T € 7y, the Markov generator Ar is called conservative
w.r.t. some o-field £ C F if

AT(fg) = fATQ, f € C(X,E), g€ T(X)
Remark 2.5.
(1) Tt is easily checked that each A is Cy-conservative, AD T, T € 7.

(2) Considering exclusion processes (with speed change), where cr(n,u) =
0, T e T,n¢eX, uec Xp, unless T = {z,y} with z,y € S and
n(z) = u(y) and n(y) = u(z), we find that, for z,y € S, the opera-
tor Az is o(mye, Ny )-conservative for each V with z,y € V. Here
Ny = (N3,...,NZ) : X — IN” is the particle number within volume
V € T as defined in Remark 2.1.

Remark 2.6.

(1) A family (cr) of admissible and finite transition rates can be transformed
into an equivalent family of admissible and standard transition rates (ér)
by a standardization procedure. Define for T'€ 7, v € Xp, 1 € X,

0, if v(z)=n(z) for some z€T,

ér(n,v) = Z ca(n, (navr,v)), otherwise,
A€To,ADT

where (na\7,v) € Xa is the composition of v and na\T, 1-€.

(navr,v)(z) =n(z), z€A\T,

~and
(navt,v)(2) = v(z), z€T.

Since (¢r) is finite, there exits, for any = € S, a set T, € 7 such that
V C T, for any V € To with V 2 z. Hence, for any T' € 7, it follows from
AeT,ADT that

Ac|T.eT.
zeT

So the above sum defining &r is a finite sum. The family (ér) is equivalent
to (cr) in the sense that the specified IPS’ coincide.

Indeed, define Ar(u,v) = {z : u(z) # v(z)}, u,v € X7 and consider

A=Y 3 el ) [fGrn ) - £)]

TeT veXp
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for n € X, f € C(X). Then we find

Aftn)=2" > > ealn, (ame,0)) [F(rr(n,v)) - f(m)]

TeT veXy: A€T:
Ar(vn)=T ADT

=3 > Y el (az, ) [F(raln, (maT,v)) — F()]

TeT wveXy: AeT:
AT('Uﬂ?)=T ADT

=3 > Y ealnw[f(raln,w) — ()]

AETTCA u€eXap:
AA(uﬂ?)=T

=3 2 ealnw)[fraln ) - £0)]

AET ueXr
=Af(n), neX, feCX).

(2) If the transition rates are so that 7y = {{z},z € S} (so-called spin pro-
cesses), then the rates are always finite and standard.

(3) So-called edge processes, which are defined by the requirements that W =
{0,1}, 7o = {{=z,y}, z,y € S, z # y} and cr(n,u) = q(nr,u), T € To,
for some non-negative matrix q : W2 x W2 — [0, 00), are in general not
standard. Only in the special case that g(u,v) = 0 unless u = (0,1), v =
(1,0) or u = (1,0), v = (0, 1) (simple exclusion process), the corresponding
edge process is standard.

Definition 2.14. Let A denote the Markov generator corresponding to a fam-
ily ¢ of admissible transition rates. A measure v € Z(X, F) is called globally
reversible with respect to A if

/ gAfdv = / fAgdv, fg€T(X). (GR)

The set of all globally reversible probability measures w.r.t. A (resp. ¢) is denoted
by Z(c). :

Remark 2.7. This concept of global reversibility is equivalent to time-reversal
invariance of the IPS with generator A and initial measure v. See for instance
[14, §I1.5] for details.

Definition 2.15. Let A = Y .., A7 denote the Markov generator correspond-
ing to a family ¢ = (cr)rer of admissible transition rates. A measure v €
P (X, F) is called locally reversible with respect to A if

[sArsav= [ targdv, f9eT(0, TeT. (LR)
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3. Main results

Theorem 3.1. Suppose that a family ¢ = (cr)rer of admissible transition
rates is finite and standard. Then v is globally reversible if and only if it is
locally reversible, that is v € %Z(c) if and only if

[sarsav= [ targav, TeT, f,9€0(X).

Remark 3.1. In the case that W = {0,1}, 7o = {{z} : ©z € S}, Liggett [14,
Ch.IV] (Stochastic Ising models) infers from global reversibility upon local in-
variance, i.e. it is concluded that v € %Z(c) implies [A,fdv =0, f € C(X)
for any ¢ € S. Similarly, for exclusion processes with speed change where
To = {{z,y} : z,y € S}, Georgii [8, §2] proved that global reversibility implies
local invariance in the sense that [ Ag, 3 fdv =0, f € C(X) for any z,y € S.
In the first case, the state space W of the local mechanism has only two ele-
ments. In the latter case, the closed classes of the local transition mechanism,
which are of the form {(u,v),(v,u)} with u,v € W, always contain at most
two elements, although the single-site space can have more than two elements.
Therefore, in both cases, local invariance and local reversibility coincide and the
mentioned results are specializations of the above theorem.

Before proving the theorem we state the following lemma.

Lemma 3.1. Suppose that 7, € X, V € T such that A := {z € V : n(z) #
¢(z)} # 0 and set f :=1{nv}, g := 1{{v}. Then the following properties hold:

(l) (fApg — gAAf) =0, AeT, unlessANV =A.
2)  (fAg—gAf)= >, (fArg—gAsrf).
AETH,ANV=A
Proof. Let us first verify the following propositions.
(a) f(€)g(€) =0,¢eX,

(b) f(€)g(Ta(€,v)) = O for any € € X, v € Xy, with v(z) # {(z), z € A,
AeT,unless ANV = A,

(c) f(ma(&v))g(€) = 0 for any £ € X, v € Xu, with v(z) # &(z), € A,
AeT,unless ANV = A.

Property (a) is immediately clear. For the proof of (b), we fix { =~ X, A € T,
v € Xj with v(z) # &(z), = € A, and use the shorthand &Y := 7o(€,v). We

. estimate

0L f(€)g(€”) = L{nv}(&) L{¢v }(&") : (3.1)
< I{nanvina HE) T{Canvna HE) T{na\a }(E) 1{{a\a} (")
= L{nuanviaé) 1{{anvina } @) T{na\a}(€) 1{Ca\a}(€)-
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The latter equality follows from the fact that €} = v and £}. = a-. We observe
that

H{nanvna (€ H{anvnatv) =1

(ANVI\A =0

= or

(ANVINA#D and nanvia = {anvia = YAnva
and A ‘ ‘
N - (A\NA=0
I{naat (@ H{lanat(§) =1 <= Jor - = |

SR A\NA#D and naa = {ava = Eaa-

Since v(z) # fA(:t), z € A, and na(z) # Ca(z), = € A, we conclude that the
product in (3.1) vanishes for ANV # A, which proves (b).

The validity of proposition (c) follows analogously.
Now we get for A€ 7T, € € X,

(f Ang — gAAF)(E) (3.2)
= 57 aal&,v)(F(E)g(€”) — F(E)9(€) — g(E)F(EY) +a()F())
vEXA
=Y &) (f(©9(E) ~ g(E)F(€")) =0 unless ANV =A

vEXA:
v(z)#€(z),z€EA

and

(fAg—gAf) = > (fArg — gArf)

AeT
= > (fArg—gAnS). (33)
AETy ANV =A

0

Proof of Theorem 3.1. Suppose that f,g€T(X). For any sequence (T )nen C7
with Ty, C Tna1 and UpenTy = S, we get from (2.5) the estimate

H > (gArf - fATg)H <> lgArf - fArg]

TCT,. TeT

<llgl > IAzfl+ 111 D Il Agl

TCT TCT
<2C| flllgll-
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Therefore the Dominated Convergence Theorem implies that

Z/(QATf fArg) dV—/Z (9Arf — fArg)dv

TeT TeT
= [0 3 rs =13 Arg) dv
TeT TeT

= [(oAf - £Ag)av

Thus it follows from (LR) by summation over T € 7 that (GR) is satisfied,
ie veZ(c).
We show now that (GR) implies (LR). To show this define

T ={TeTo:Ae T, ADT = A=T},
n—1 . n—1 . ’

" = {TE’ZZ)\UTJ:AE%\UTJ,A3T=>A=T}, nelN.
J=0 j=0

Since (cr) is finite, 7° # § and

o= 7.
JjeENy

Fix T € T°. We show that (LR) is satisfied for f,g € Ev(X) with V D T'.

To thisend, fix n,( € X,V €T,V DT, and set

A:={zeVin) #{()}, f=1n}, g=1{}

Without loss of generality we can assume that A # () since (LR) is trivially
satisfied for f = g. It follows from Lemma 3.1 (1) that

[ (fArg — gArf)dv =0, T #A,

and by Lemma 3.1 (2) we have
[ang-garyav = [(149 - oAR)dv
- > / (fArg — gArf)dv, T =A.

AETo, A£T, ANV =T
Since T € T° implies that A g Ty forany AD T, it follows that
> [GAg-ganndv=

AETo, A#T, ANV =T
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Hence v € Z(c) implies that

[(t4rg— gars) v =0 (3.4)

Since Cy (X) = sf)anEv(X) and T(X) = Uy ez vor Ov(X), the last equation
extends to f, g € T'(X). ' '

Now assume that (3.4) is valid for T' € U;:Ol 77 and f,g € T(X). Fix
T € T™ and choose f,g € Ey(X) with V' D T. Suppose that

f=1{nv}, g=1{¢} forsome n,¢e€X
with
| A= {z e Vi) # ()} £0.

We observe that the relation A € 7g, A 2 T implies that A € U?—Ol 77, Hence

S / (fAng — gAnf)dv =0,

AETy AT, ANV =T

by our assumption of induction. Applying Lemma 3.1 we get from v € % (c)
that

/ (fAzg — gAz ) dv
0, ' if T £ A,

=1 [(tag-ganw— 3 [ang - ganpyav =0, itT =
L A€To,A#£T,
ANV =T :

Again, since Cy(X) = spanBy(X) and T(X) = Uyer yor Ov(X), the last
equation extends to f,g € T(X). By induction we conclude that

/(fATQ-gATf)dVZO, TeT, f,g€ T(X).

The linear operator Ap on C(X) is bounded and thus continuous. Since the set
T(X) is dense in C(X), the last equation is valid for any f,g € C(X). O

Proposition 3.1. Suppose that v € P(X,F), T € Ty. Let Fr C F bé. a
o-field such that At is conservative with respect to Er with Cr C Er. Then the
following statements are equivalent.

(1) [(gArf — fArg)dv =0, f g€ C(X).
(2) v(gArf — fArg| Er) =0, f,g€ T(X), v-as.
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(3) v (gArf — fArg) =0, f,9€ T(X), v-as.
(4) For v-a.a. £ € X it holds that
er(€,u, v (n7! (w),€) = er(€, v, u)vp(rr'(v),§),  (DB)
for all u,v € Xr, where c(n,u,v) := c(rr(n,u),v), u,v € X, n € X.
Remark 3.2.

(1) We will use the phrase that a specification v = (yr)reT Tesp. some sub-
family v° = (yr)rer, solves (DB), if (DB) is satisfied for each £ € X and
T € Tp. )

(2) For any fixed T € Ty, £ € X (actually only the external condition &p-
counts), statement (DB) is the property that the Markov chain on X7
with generator matrix (er(€,u,v))yvex, is reversible with respect to
the measure pr(€,-) € P (X, WT) given by pr(¢,u) := pr(€, {u}) =
Vo (w5t (u), €). Therefore Kolmogorov’s criterion [17] on the existence of
a reversible measure for finite Markov chains is an essential tool for the
decision whether there is a reversible measure for a given IPS. If the local
dynamics (¢ (€, u,v))u,vex, are irreducible and reversible, the values of -
v¥.(-,€) are positive and uniquely determined by (cr (€, %, V))uvexr-

Proof of Proposition 3.1. Fix T € T. We choose n,¢ € X, V € T with V > T.
Since A is & conservative, we conclude from (1) that, for any h € C(X, &r)
and f = 1{nv}h, g =1{¢{v},
0= / (9Arf — fArg) dv
= [v(odrs - £azq) | &) av
= [ (@ (e} Ar@nIm) - LI hArI(Go)) | Er) dv
~ [ (h1 ey Aran} ~ 2 b Art(Gv)) | r) dv
= [ ho(@eArtind - 1} ArLiGr)) | ) dv
Hence |
v(gArf — fArg | E7) =0 v-as, Te7, f,ge Ey(X).

This equation extends to f,g € C(X, Fy) by the linearity of mtegratlon and
since T(X) = Uy ey C(X, Fv), this yields (2).
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‘Since A is always Cr conservative, we conclude from (2) that

0 = v(gArf — fArg | Cr) = Yo(gArf — fArg), v-as, T€T, f,g€T(X),

which is (3).

Further, we may integrate (3) with respect to v and get from the property
vy% = v that [(gArf— fArg)dv =0, f,g € T(X). The linear operator Ar on
C(X) is bounded and continuous, the set T'(X) is dense in C(X), thus the last
equation is valid for any f, g € C(X), which is statement (1).

For the proof of the equivalence (3) < (DB), we decompose any function
f € Cy(X) with V 2 T into

f= Z n{ﬂxjiT(U)}fv’

’UEXV\T _

Cwith fu(n) == frp(nu). Siice fo € Cr(X), 1{myla()} € O(X,Cr),
v € Xy\r, we find that (3) is equivalent to »

’Y’_ZU”(QATf - fATg) = O) fag € CT(X)7 V-a.s.

Now f € Cr(X) is decomposed into a finite sum of simple functions,

f=> Mrp'(u)lew,

ueXr
where ¢, = f(rr(n,u)) € R. Thus (3) is equivalent to
vi(gArf — fArg) =0, f,g9€ Ep(X), v-as.
Since for n,¢{ € X,
(1 {nr}ArL{¢r}) (p) = L{nr}(p)er(p,Cr), P EX,

the last equation is equivalent to

/(ﬂ{nT}(MCT(p, (r) — n{cT}(p)cf(p,nT))jgj(dp,-) =0, v-as.

Replacing nr = u, {r = v, this is just (DB). O

Corollary 3.1. Suppose that the family c of transition rates Is admissible,
standard and finite. Further assume that v € 2(X,F). Then the following
statements hold true.

(1) If v € %(c) then v-a.s.

v(rpt(w) | Cr)er(,u,v) = v(rp (W) | Cr)er(v,u) wveXy, TET.
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(2) If there exists a specification v which solves (DB) for all { € X, T' € Iy,
then ¥(v) C Z(c). If c is additionally irreducible, then Z(c) = 9(7).

Remark 3.3. In Corollary 3.1 (2) the requirement that there is a specification
which solves (DB) for all £ € X, T' € Ty, actually contains two conditions.
Firstly, (DB) has to be solvable for any £ € X, T' € Tp. Secondly, one has
to decide whether a given family p = (pr)rer, of solutions of (DB) allows a
consistent extension to a specification and whether this extension is unique. In
the case that 7o = {{z},z € S} the latter question is answered with the help of
one-point specifications. ‘

Proof.
(1) The assertion directly follows from Theorem 3.1 and Proposition 3.1.

(2) Suppose that « is a specification which solves (DB) for all £ € X. Then for
each v € ¥4(v) equation (DB) is satisfied v-a.s. Therefore, by Proposition 3.1
and Theorem 3.1, v € Z(c). Hence G(y) C R(c). If ¢ is irreducible, then v is

the unique solution of (DB). Applying (1) we deduce from v € R(c) that

v(rzt(u) | Cr) = yr(nz'(u),)), weXr, TeTy, v-as,

thus v € 9(v). ' | O

4. Application

4.1. Spin processes

We are going to apply our results to IPS where at most one coordinate is
changed in any transition. As before, we have W = {0,1,...,n — 1} for some
n € IN and denote by ) the uniform distribution on (W, W).

Definition 4.1. An IPS with transition rates ¢ = (er (-, ))reT is a spin process,
if To = {{z} : x € S}. A spin process is a spin-flip process, if W = {0,1}.

In the following, let us abbreviate c;(1,v) := c(z1(n,v), n € X, v € W and
¢:= (cz(,"))zes. Whenever there is no room for misunderstanding, we use the
notation Ay, Tz, Cx, T° etc. instead of Az}, Tz}, C{z), {}€ etc. Let us further
agree to write

ce(m, u,v) = cx(tx(myu),v), €S, u,veW, neX.

Note that c; (-, u,v) is C,-measurable, u,v € W, z € 5.

For spin processes, we find that any admissible family of transition rates is
finite and standard. Further, by Remark 2.5, for z € S, the Markov operator A
is Cp-conservative, where T' € T, T > z.
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Proposition 4.1. Suppose that c is a family of irreducible spin transition rates.
Then any globally reversible measure v € %(c) is dense. '

Proof. Fix x € S. Since c is irreducible, the unique invariant measure p, (&, ) of
the transition matrix cg (€, ©, v)y vew is positive for any € € X. By Corollary 3.1,
it follows from v € Z(c) that v(- | C;) satisfies (DB) v-a.e. Hence v(- | C;) =
pz(€, ) v-a.e., which implies . '

v(r; (u) | Cs) >0 v-as. |

Hence '
v(rz'(w) = v(v(r; ' (v) | C)) >0

Further we have

since

/\
/\

)1 Ca)

(W)} 2y (v)} | Chay)

(v (1{rz (@)} L{my ' ()} [ Ca) | Cray)

(v (W{mz (W} | C2)1{my (0)} | Cpay)

(v (s (W} | Ca) (7 (-, 0)) L{my  (v)} | Cpapgy)

(L (W)} | Ca) (ry (o)) v (L{my ()} | Cagy)

({mz (W)} | Ca) (1 0))v (v (g (0)} 1 Cy) | Cagy)

= v (W) | Co) (1y () (v (g (v) | Cy) | Cpagy)-

The latter factor is v-a.s. positive, and for the former factor we ﬁnd that

v({&:v(m ) 7y(€,v)) = 0})

< V({éf f = v, (m, 1(U) | Co)(€) = 0}) + v((ny* (v))°)
<v({¢:v(n; (U) | Ca)(€) = 0}) + v((my " (v))°) = v((m; (v))) < L.

)ﬂ7ry_ (v

1%

!
N

v

i
NI
N

I
<

T

I
N

U

>1

v(rzt(w)n ng(v)) =v(v(rz (u) N 7ry—1(v) | Clayy)) >0

It follows by induction that v is positive on all non-void cylinder sets, hence it
is dense. .

Proposition 4.2 (local Kolmogorov criterion). Suppose we are given a
spin process with irreducible, admissible rates ¢ = (c;(*,))zes. Then, for fixed
z €5, n € X, the following statements are equivalent.
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(1) (DB) is solvable for ), x

(2) The transition matrix (cm(n, u,V))uwew on W has got a reversible mea-
sure.

(3) The transition matrix (cg(1, %, v))uvew on W satisfies one of the following
equivalent conditions.

(a) For each k > 3, v1,...,vx € W with v = vy, we have

k—1 k-1
H ¢ (7, Vi, Vig1) = H ¢z (M Vi1, Vi)
i=1 i=1

(b) cz(n,-,-) has got the two-way communication property and for each
sequence of local states vi,...,vx with k > 2 and cx (M, i, Vig1) > 0,
i=1,...,k —1, the product

H 77;"/1.7'014-1
L1 ca(m, vit1, vi)

(in general a function of Nee, V1,..-, Uk and k) is only a function of
Nge, U1 and vg.

If any of the preceding statements holds, the solution p.(n, -) of (DB) is unique
in (W, W) and is given by

k-1

Cy 77,'U'La'U1,+1 A
V) = 2, )’ v e W\ {0}, 4.1
pelnv) = "0 [ 202 \ {0} (41)
pe(n,0) = 25 * (),
where 2z 1(77) is the normalizing factor, k > 2 and 0 = vy,...,V% =V satisfy

ca(n,vi,vig1) > 0,0 =1,..,k—1.
If the rates ¢ are even positive, the solution py(n,-) of (DB) is given by

pm(n,v)=(1+ > -C-?M>_l, veW. (4.2)

uEW\{'u} Cm('l’], U, U)

Proof. Fix ¢ € X, z € S. The transition matrix (cz(n,%,v))u,vew defines
a finite Markov chain on W which has got a reversible measure iff (DB) is
solvable. Hence (1) & (2).

The equivalence (2) & (3)(b) is a consequence of Kolmogorov’s criterion for
reversibility (see e.g. [17, Thm. 3.1]) applied to the Q-matrices (cz(§, u,v))u,vew -
There it is also proven that (3)(a) & (3)(b) if cz(n,-,-) has got the two-way
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communication property. So we have to show that the two-way communi-
cation property follows from the fact that cy(n,-,-) is irreducible and satis-
fies (3)(a). Indeed, suppose that there are u,v € W such that ¢, (n,u,v) = 0 but
cz(n,v,u) > 0. By irreducibility, there exist k¥ > 3, v; = u, vs,...,v5 = v such
that c(vz,vwl) > 0. Setting vg11 := u, we observe that HZ 1 €2 (1, 05, Vi41) > 0

and H,L_ (1, Vig1,v;) = 0 because ¢z (1, vkt1, V) = cz(n,u,v) = 0. But this
contradicts property (3)(a). Thus (2) < (3).

If any of the statements (1), (2) or (3) holds, the corresponding solution
pz(§,-) of (DB) is unique in the set & (W, W), since c¢ is irreducible, and it
satisfies (4.1). If ¢ is even positive, then we find that

Po(§su) = Sig-?z—’gpm(&v), u,v € W.
Hence

1:me<s,u>:pm<s,v>(1+ T M) vew,

e weim oy (&%)
which implies that
-1
ren=(ir & i) vew
* wEW\{v} FV>7 7 . |

a

Theorem 4.1. Suppose we are given a spin process with admissible rates ¢ =
(cz(:y-)). If the rates c are irreducible, then the following statements are equiv-
alent:

(1) Z(c) # 0.

(2) (DB) is solvable for all§ € X, z € S, the family of solutions being denoted
by p = (pz)zes, and one of the following equivalent conditions is satisfied.

- (2.a) For any z,y € S and { € X with {(z) = ((y) = 0 it holds that

pm(C,U)py(Tx(C,U),U)pm(Ty(C, u),0)py (¢, 0)
:py,(CaU>Pm(Ty(Cau) v)p y(72(¢,v), 0)p2 (¢, O)

(2.b) For any z,y € S and ¢ € X with C(z) = {(y) = 0 it holds that

ca($,v) ey (T2 (€, v), w)ea (Tay (¢, v1), 0) ey (7 (¢, ), 0)
= cy(Ca U)Cm (Ty(Ca u)a U)Cy (Tmy (Ca UU)) O)C:B (Tm (Ca 'U): 0);
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where
C(Z), z# T, 2F£Y,
Toy (¢ vu)(2) = ¢ v, z =z,
u, z=y.

If any of the preceding statements holds, there is a positive and continuous
specification v = (yr)reT such that

R) =Y(y) = {v € PX,F): vy = v}

This specification v is uniquely determined by the following equations.

k-1
Ve (7%;1(”), 77) = Z;l(n) H Zigg::ﬁ:ﬁi}ti, ve W\{0}, vz (71‘;1(0)) = zgl(n),

where z71(n) is the normalizing factor, k > 2 and 0 = vy,..., v = v with
cx(n,vi,viﬂ) >0,i1=1,.. Gk —=1.

Proof. We start with a preliminary consideration. Fix z € S and suppose that
(DB) is solvable for all £ € X, the solution being denoted by p.(&,-). Since ¢
is irreducible, the solution is unique in &(W, W) and positive. We call a finite
sequence (0 = v1,vz,.., vk = v) € W¥ a (-path to v € W\ {0}, if k& > 2
and ¢z (¢,v;,vi41) > 0,9 = 1,...,k — 1. The functions ez, u,v), u,v € W,
are continuous, since c¢ is admissible. Hence, for fixed £ € X and fixed {-paths
to v € W\ {0}, there exists a § > 0 such that the -path to v is as well a
¢-path to v, v € W\ {0}, ¢ € Us(¢). This implies that, for any ¢ € Us(£), the
representation

k~1
pelCo) = 0 T 202 o ew\ (0}, pal(,0) = 27(0)

(¢, Vi1, vs)

holds true, where z;(¢) is the normalizing factor, and (0 = v1,..., 0 = v),
v € W\ {0}, are the fixed &-paths to v: From the continuity of ez (-, u, ),
u,v € W, we conclude that the functions p;(-,v), v € W, are continuous in €.
Hence, if (DB) is everywhere solvable, the solution p, is unique in DP(W,W),
and pg(-,v), x € S, v € W, are positive and continuous functions.

Now we show that (2) implies (1). Suppose that (DB) is solvable for all
¢ € X, z € S, the family of solutions being denoted by p = (Pz)ze.- According
to Definition 2.8 p is consistent whenever condition (2.a) is satisfied. Define a
family 70 = (7z)zes of functions v, : F5 x X — [0, 1] via

7m(7r;1(v),77) =ps(n,v), veW, neX

Each of these (X, C;)-(X, Fy) probability kernels has got a unique extension to
a proper (X, Cy)-(X, F) probability kernel, which shall be denoted by the same
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symbol. The family v° is consistent since p is consistent and thus it is a positive
and continuous one-point specification by Proposition 2.4.

By Proposition 2.5, there exists a specification v which contains 70 as a
subfamily and satisfies 4(y°) = ¥(y) # 0. Clearly, this specification « is a
solution of (DB) and therefore Corollary 3.1 (2) applies. Sine c is irreducible, it
follows that Z(c) = 4(v) = 4(v°) # 0 which is (1).

It remains to show that (1) implies (2). Suppose that there exists some
v € %Z(c). Then ~Y satisfies (DB) v-a.s. Therefore, for any z € S and v-a.a.
¢ € X, equation (DB) is solvable. By Proposition 4.2, we find that for each
k>3, v1,...,v5 € W with vy = v1 and v-a.a. £ € X, the following equality is
valid.

k—1 - '
H C:z:('r];"ui;v'i-i—l H 77,U2+17U1 (43)
i=1 : =1

But since the functions ¢, (-, vy, vsp1) are continuous, i = 1,..., k and since v is
dense, equation (4.3) extends to all n € X. Applying Proposition 4.2 again, it
follows that (DB) is solvable for any n € X. The solution is unique in £ (W, W),
because c is irreducible, and it is given by p = (pz)zes with

k—1

Pm(ﬂ, - Z H

=1
px(n,0) = z;1(n),

where z;1(n) is the normalizing factor, kK > 2, and 0 = vy,...,v = v with
c(n,vi,v341) > 0,i=1,...,k — 1. Consequently,

Cz (1, Vi, Vig1)
, v e WN\A{0},
Cy 77,Uz'+1,’0¢) : \{ }

’Ym( 1(“),77) = p:c('r],'U); v-a.s., v € W.

Since " is a specification, it is consistent. Hence p is v-a.e. consistent, i.e. for
any z,y € S and v-a.a. 1 € X with n(z) =n(y) =0,

Pz (1, V) Py (72 (n,v), u)pe (Ty (1, 1), 0)py(n,0) (4.4)
= py (1, )Pz (Ty (0, 1), v)py (72 (1, v), 0)p=(n, 0).

By the preliminary considerations above, p,(-,v) is a continuous function for
any v € W. Thus equation (4.4) extends to all n € X because v is dense. O

Example. Stochastic Ising models

We consider spin-flip processes, that are spin processes with W = {0,1}. As
before, 7o = {{z} : z € S}. We abbreviate

C(%W) = Cm(ﬂ, 1- 77(33))’ S S, i € X;
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for the rate of a transition n — 7*, where, for z € S,

2y e 4 1@, z # T,
m(z): {1—-77(2), z=z.

Suppose that the family (c(z,))ses is admissible and irreducible. Note that
transition rates of spin-flip processes are irreducible if and only if they are
positive.

Definition 4.2. The IPS corresponding to an admissible and positive family
(c(z,-))zes of rates is called stochastic Ising model, if there is a uniformly con-
vergent potential ® = (®4)ae7 such that for any = € S, the expression

.

cmme{ S oat), neX, (DB-L)

ASz
does not depend on the coordinate 7(x).

Remark 4.1. Our notion of stochastic Ising model is slightly weaker than that
of Liggett [14, Ch.IV]. More detailed, a spin-flip process is a stochastic Ising
model in the sense of Liggett if there exists a collection (Jr) ReTU{0) Of real

numbers with
> 1Jr| < o0

R>ozx
such that :
c(z,m) exp { > JRXR(U)}> n€X, (DB-L¥)
Roz
where

xr(m) = [[@n(z) -1, ReT,

TER
X@(T]) =1, URSS X’

does not depend on the coordinate n(z). Thus the notion of stochastic Ising
model in Definition 4.2 is formulated with respect to a general uniformly con-
vergent potential ® = (®4)ae7, while that of Liggett concerns an absolutely
summable so-called spin potential. '

Obviously a stochastic Ising model in the sense of Liggett is one in the sense
above. Conversely, if a spin-flip process is a stochastic Ising model with respect
to some finite range potential ®, then it is a stochastic Ising model in the sense
of Liggett. Indeed, since W = {0,1} is finite, the Hamiltonians

HY= > %4 AeT,
AT , ANA#D
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are bounded if the potential ® is uniformly convergent. Therefore Theorem
(2.35)(b) in [9] applies, which states that there is a uniformly convergent, so-
called lattice-gas potential P& equivalent to ®. If the latter is even absolutely
summable, then, by [9, Ex. (2.38)], there exists an absolutely summable spin
potential ®PIM equivalent to ®82%. Under the assumption that ® is of finite
range, one finds that ®&% and ®P™" are of finite range [19] and therefore ab-
solutely summable. However, if the finite-range assumption is relaxed, then it
is not clear, whether there is an absolutely summable spin potential which is
equivalent to @. It was shown in [19] that even in the case that & is absolutely
summable it is possible that there exists no equivalent absolutely summable spin
potential.

Corollary 4.1. A spin-flip process with admissible and positive rates ¢ is a
stochastic Ising model if and only if the condition (2.b) in Theorem 4.1 is sat-
isfied.

Any IPS which is a stochastic Ising model Wlth respect to some potential ®
is globally reversible and satisfies

R(c) =9 (+").

Prdbf. Suppose that we are given a spin-flip process with positive rates that
satisfies condition (2.b) in Theorem 4.1. Then (DB) is solvable for all £ € X
and, for fixed z € 5, € € X, the unique solution is given by

clz, 7(E,1 —v
px(g,’u) = ( :v( ) )
C(:E, Tx (5, 1- U)) + C(:E, TJI(S) U))
By Theorem 4.1, there is a positive and continuous specification v = (yr)rer
such that

vew.

1o (T71(0),6) = pal&,v), E€X,veEW, z €S,

T
and
() = 9 (x) 0.
Further, by Proposition 2.5(2), there is a uniformly convergent vacuum poten-
tial ® such that v = v®. Hence v?® solves (DB). But v? satisfies

Yo (5 7 (v), €) —exp{ > B(r(6,0) } 26, eX,veW zesb,

<3 AB:B
e

where Z1(¢) is the normalizing factor. Inserting this representation into (DB)
we get for £ € X, z € 5,

:zsgexp{ Aza:m@ } = ¢(z, £°) eXp{ g@fim} £*).

Since Z,(€%) = Z,(£), the normalizing factor can be canceled on both sides of
the equation. But this implies (DB-L). O
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Remark 4.2.

(1) A sufficient condition for an IPS to be a stochastic Ising model was givén
in [14, Thm.IV.2.13]: If the IPS assigned to a positive, finite-range family
(c(x,-)) is globally reversible, then it is a stochastic Ising model, i.e.

Z(c) # 0, c positive = (DB-L")
for some finite range potential ®.

(2) The analogous statement to our Corollary 3.1 for spin-flip processes is [14,
Prop.IV.2.7]:

vex
(i

pal) = v (n(e) | C) ) = o

z,n) + c(z, ")

, neX, zedS

(3) Our findings are conform with the results of Mu Fa Chen and coworkers
which were reported in [1]. There the global reversibility of spin processes
(and exchange processes) with W = {0,1} is studied with the help of
so-called potentiality. ,

Example. Alignment model

The alignment model was introduced in [13] as a model for the emergence
of a global orientation from local alignment for cell populations. It is a spin
process with state space W = {+te;, i = 1,...,d}, where e;, i =1,...,d are the
unit vectors of R%. The transition rates are given by

cm(n,U):zeXp{’r > n(Z)OU}, rel, neX, ueW,

z:|z—z|=1

where v > 0 is a parameter called sensitivity and o denotes the scalar product

in R%. We observe that the family ¢ = (cz(:,"))zes is positive. For n € X,

r € S, the rates co(n,u,v) = c(tz(n,u),v), u,v € W, are irreducible. Since

¢z (-, v) is Co-measurable for each z € S, v € W, (DB) is solvable for all £ € X.
By Proposition 4.2, the solution is given by :

: 1
pm("?:v) = 7

1+ ZUEW\{‘U} Cm(}‘n’ v, u)/cw (77, U, U)
1
L+ zuEW\{v} exp { Zz:lz~—zl=1 77(2) ou— Zz:|z——$|=1 ’I’](Z) © U}

—zmes{ ¥ aov)

zi|z—z|=1
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where
Z) = Y ew{ ¥ a)ouf
ueW zilz—z|=1
and z € S, v € W, n € X. One easily finds that

pa(n,v) = exp{ - @(Tm(n,'v))},

A>dz

where & = (®7)re7 with

Do) = n(z)on(y), T ={z,y}, with|z—y|=1,
o, otherwise,

is of finite range. Thus the specification ¥® solves (DB). Applying Corollary 3.1,
we find that Z(c) = ¥(7®). The subfamily (v%)? = (72),es is a positive and
continuous one-point specification, hence %(v®) = Z((v*)?).

4.2. Composite IPS

We consider IPS that are composed of several types of local dynamics like
spin-flip and spin-exchange processes. Let 77,72 C 7 with 73 N7y = § and sup-
pose that ¢z, = (cr(, -))rer; and ¢, = (er(,-))TeT, are two admissible families
of transition rate functions. Define 7y := 73 U7; and ¢, := (er(+,))rer,. Each
cr:, 4 = 0,1,2, can be understood as a family of transition rate functions where
the local dynamics on 7 \ 7; is trivial, i.e. the corresponding rates vanish. The
following proposition is a direct corollary of Theorem 3.1.

Proposition 4.3. Let 7y = 7T;U7T; where 71,7, C T with T;NT, = 0. Suppose
that ¢z, = (er(-,-))rer, and cr, = (cr(:,+))reT, are finite and standard. Then

Z(cr,) = %(cty) N Z%(cT;)-

Proof. According to Theorem 3.1 it holds for ¢ = 0,1, 2 that v € Z(cr;) if and
only if

v(gArf — fArg) =0, TeT, f,geCX).
Hence v € %(c7,) if and only if v € Z(cr;) for i =1, 2. O

Next we specialize to IPS that are composed of spin-flips and more complex
local mechanisms, i.e. we set 71 := {{z} : z € S}.

Proposition 4.4. Suppose that ¢ = (¢(,-))rer Is a family of admissible, finite
and standard transition rates with Ty = {{z} : « € S} C Ty. Assume that
the family (c;(,))zes Is irreducible and satisfies condition (2) of Theorem 4.1.
Let the positive specification which is determined from (cz(:,"))zes according
to Theorem 4.1 be denoted by v = (yr)rer. Then the following statements are
equivalent: )
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(1) Z(c)=9(y) ={ve PX,F) vy, =v}#0.
(2) For each T € Ty \ Ty and each u,v € Xr, n € X, it holds that

YT (777 Wj_“l(u))cT(’m u, ’U) =T (777 ﬂ;l(v))cT(Th v, ’LL)

Proof. Denote 73 := T\ 7y and c7; := (er(-, ))rer, i = 1,2. By Proposition 4.3
Z(c) = Z(c,) N %(cT,) and by Theorem 3.1

%(071) :g(’)'): {VE @(X,f}:l/’)’m :V} 7é®a

where v = (vr)rer is the specification which is determined from (c;(-,"))zes
according to Theorem 4.1. Hence Z(c) = 9 (y)NZ%(cr, ), and it remains to show
that the condition ¥(v) C Z(c7,) is equivalent to (2).

Suppose that ¥(v) C Z(cr,) and fix v € 4(v). Then it follows from Corol-
lary 3.1(1) applied to cz, that v-a.s.

V<7r’;l(u) 1 CT)CT("U“’U) = V(W’J—“l(v) l CT)CT('av»u)7 u,v € Xp, T € Ty,
and therefore v-a.s.
fYT(-,ng(u))cT(-,u,v) = WT(-,qul(v))cT(-,v,u), u,v € X, T €7T.

Since -y is positive and continuous, the measure v is dense (Proposition 2.2). The
functions cr(-,u,v), u,v € X, T € Ty are continuous, as well, consequently
the latter equation holds for all n € X which is (2).

Conversely, suppose that (2) is satisfied. Then we get from Corollary 3.1(2)
applied to ¢z, that ¢ (y) C Z(cr,). | O

Example. Processes with combined Glauber- and Kawasaki-type dy-
namics

Let W = {0,1} and suppose that we are given a family ¢ of admissible
rate functions. Let further a finite-range potential ® = (®4)ae7 be given with
corresponding Hamiltonians

HY(m):= >  ®aln), neX, AeT.
AeT , ANAH£D

Assume that ¢y 1 (n,u) =0, 2,5 € S, 7 € X, u € X(4,y) unless |t —y| =1 and
n(z) = u(y), n(y) = u(z) = 0. Then, using the notations

nm(z) _ {1 - 77(33), Z =,

n(z), otherwise,
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and

3

(
N (z) = 4ny), z=u=,
n(z), otherwise,
the rates cp(-,-) are for T = {z} € 71 completely described by c(z,n) :=

Ca:(na 1- 77(7:)) and for T' = {:z:,y} € T3 by C(iII,y,'I’}) = c{m,y}(nanfiy})'
If ¢(z,n) > 0 for each z € S, n € X and the equation

c(z,n) exp{—Ha(n)} = c(z,7*) exp{—Hz(n")} (4.5)

is satisfied for each z € S, n € X, then there is a globally reversible measure if
and only if the rates c(z,y,n) satisfy for z,y € S, n € X the condition

e(z,y,m) exp{~H{zy3(n)} = c(z,y,n") exp{—Hz 3 (7")}.  (4.6)

If the latter condition holds, then %Z(c) = %(v?).
Indeed, since

V(w7 (u) = (Z2(n))

where the partition function Z%(-) does not depend on the coordinates in T,
the equations (4.5) and (4.6) are equivalent to the statement that 7% solves
(DB) for (cz(-,-))zes and (er(-,-))TeT,, respectively. Since ¥® is a specifica-
tion, it is consistent, hence condition (2) of Theorem 4.1 is satisfied. Applying
Proposition 4.4, we get the above statement.

Yexp{—H2(rr(n,u)}, TeT, neX, ueXr,

Example. Collective migration model

The collective migration model (CMM) was introduced in [13] as a model for
the emergence of global swarms from local alignment of the preferred directions
of cell movement within cell populations. In the CMM, we have

To = {{z}:z € S}U{{=z,y}: m,y € 5]z — ¥ =1},
W = {O> T1 l) g (_}
Here the interpretation is that n(x) = 0 if lattice site € S is not occupied. If

n(x) # 0, then the lattice site  is occupied by a cell which has the preferred
direction of movement n(z). Transitions occur with rates

Cm(n’u) ‘= eXp {7 Z 77(2) Ou}, zesS,neX, veW,

zijz—z|=1
where v > 0 is a parameter called sensitivity and o denotes the scalar product
in R4, resp. '

o m, n(@) =u(y) =y -z, n(y) =u(z) =0,
C{m,y}(n,u) B {0, otherwise,
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where z,y € S, [z —yl = 1,71 € X, u € Xg5 ) and m is a non-negative
parameter, the migration parameter.

It is easily checked that, for any 7' = {z,y} € 7y and arbitrary n € X,

(DB) cannot be satisfied. Thus there is no globally reversible measure for the
collective migration model.
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