

SUNFIRE AT A GLANCE

European Electrolysis Excellence

100 % Specialized on Green Hydrogen Technology for Industrial Transformation

15+

Years of H₂ industry experience

> 650

Employees from 25 nations

+008

Megawatts of electrolyzer order book

UP 1

Gigawatt of production capacity¹⁾

1) Actual production output according to customer demand

Made in Europe

GREEN HYDROGEN IN A NUTSHELL

There Are Three Main Electrolysis Processes for Green Hydrogen Production

Solid Oxide

Electrolysis

Pressurized Alkaline Electrolysis

SOEC

PEM Membrane Electrolysis

Using deionized water and an alkaline electrolyte solution (potassium hydroxide/KOH) Using high-temperature steam and a solid oxide ceramic membrane as the electrolyte

Using a gas-tight polymer membrane and a semipermeable exchange membrane

Proton Exchange

Most reliable and long-established with best scalability and no reliance on rare or expensive raw materials

Exceptional efficiency with low power consumption and capability for waste heat utilization + synthesis gas production High response rate and lower space requirements, highest hydrogen purity for special use

Slightly more space requirements and slower response speed

Early-stage technology and high operation temperatures (600+°C)

Relies on expensive and rare materials (platinum, iridium) and has limited scalability

Sunfire Product: 10 MW AEL Module

Sunfire Product: 10 MW SOFC Module

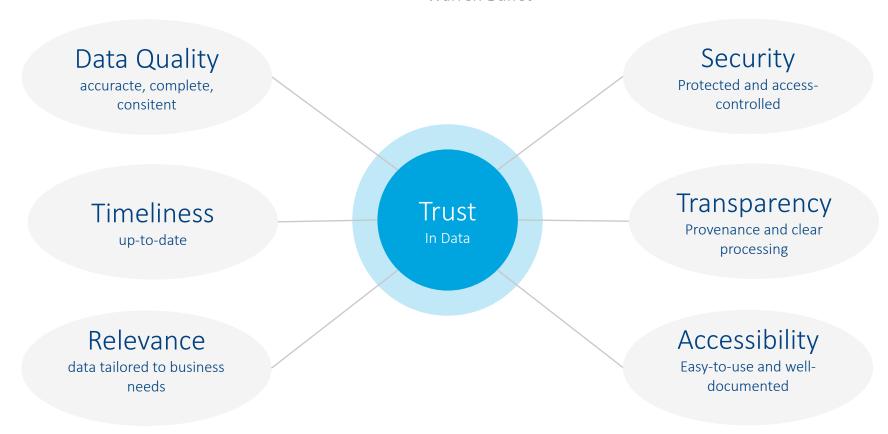
There are other relevant alkaline electrolysis systems, such as chlor-alkali.

AGENDA

Essential Topics for Efficient Data Preparation

- 1 Top goals in analytics and machine learning
- 2 Key success factors for trust in data the role of data engineering
- 3 Cutting-Edge technologies
- 4 ELT (Extract, Load, Transform) to update your data products

- 5 dbt core to transform your data over SQL + Demo
- 6 One iteration of the agile software development life cycle
- 7 Summary



Top Goals in Analytics and Machine Learning

"It takes 20 years to build a reputation and five minutes to ruin it.

If you think about that, you'll do things differently."

Warren Buffet

Key Success Factors for Trust in Data – the Role of Data Engineering

Success factors for trust in data

· Automation and efficiency

· User-friendliness tools

· Flexibility and scalability technologie

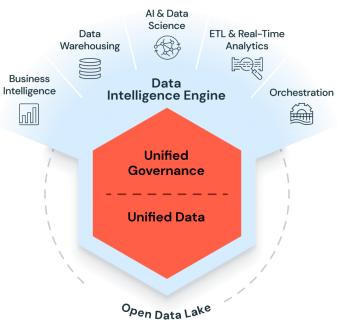
· Timeliness and real-time processing

· Quality assurance and monitoring

Modern approaches in data engineering

- · Cutting-Edge technologies
- ELT (Extract, Load, Transform) and SQL-First approach
- · use the agile software development live cycle

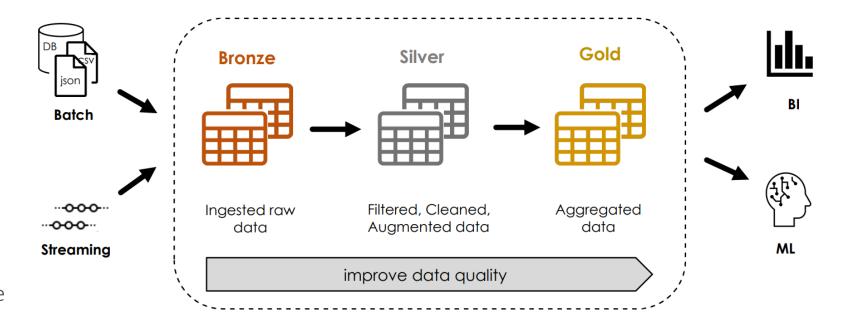
Cutting-Edge Technologies


Why cloud data warehouse platform?

- · separation of storage and compute
- · flexibility and scalability
- strong focus on declarative language SQL
- · Continuous updates and innovations
- Additional integrated features (e.g. orchestration, dashboarding, AI features)

ELT (Extract, Load, Transform) to Update your Data Products

Extract


extract 1:1 copy of raw data

Load

 store raw data in bronze layer of the data warehouse

Transform

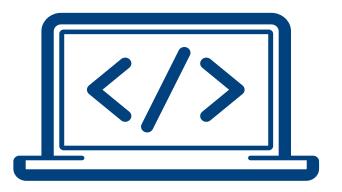
 transform your data over SQL with the medallion architecture

dbt Core to Transform your Data over SQL

Create model file "silver_transactions.sql"

- · SQL-statement for your model
- · references to sources or models
- · CTEs improve the structure and readability

```
WITH raw data AS (
           SELECT
          FROM {{ source('raw data', 'transactions') }}
      SELECT
           id,
           name,
          purchase date,
10
          amount,
11
           CASE
12
               WHEN amount > 100 THEN 'High'
13
               ELSE 'Low'
           END AS purchase category
       FROM raw data
```


Create schema file for the model "silver transactions.yml"

- description of the model/columns for documentation
- · data test for model/columns to ensure the data quality
- · define a data type to improve the quality

```
models:
       Add documentation or tests
       - name: example model
         description: "Cleans and categorizes transaction data."
         columns:
            - name: id
             description: "The unique identifier for the transaction."
             data type: INTEGER
             data_tests:
                - unique
                - not null
11
12
            - name: purchase date
              description: "The date the transaction occurred."
             data type: INTEGER
             data tests:
                accepted values:
                   values: ['2023-01-01', '2023-12-31']
17
```


Demo

One Iteration of the Agile Software Development Life Cycle

REQUIREMENTS/ DESIGN

understand requirements and design a solution (e.g. a SQL statement)

IMPLEMENTATION

develop the model in a separate branch (incl. data tests and unit tests)

REVIEW

a team member and give feedback

DEPLOYMENT TO TEST

review OK, CI/CD pipeline review your solution deploy code to the TEST-System and run tests after

DEPLOYMENT TO PROD

Test OK, CI/CD pipeline deploy code to the PROD-System

Maintenance

- track your code and config changes over git
- use a platform where CI/CD is integrated
- Conflict-free development in a team

Summary

make sure with good data quality that your stakeholder has **trust** in your data products

automate all your data piplines and save your code in a version control platform

use the simple ELT approach to be flexible and fast in modelling

work with the agile software development workflow to get iteratively added value

Thank you!

Ronny Kober Senior Data Engineer / Digital Products ronny.kober@sunfire.de

Sunfire.de

References and Sources

- dbt core to manage your transformations dbt Labs | Transform Data in Your Warehouse
- git versioning your code Git
- github GitHub · Build and ship software on a single, collaborative platform · GitHub
- Gitlab The most-comprehensive Al-powered DevSecOps platform | GitLab
- databricks cloud data platform The Data and Al Company Databricks
- snowflake cloud data platform The Snowflake AI Data Cloud Mobilize Data, Apps, and AI
- google big query BigQuery enterprise data warehouse | Google Cloud
- Book <u>Fundamentals of Data Engineering[Book]</u>
- Zach Wilson collection of links: GitHub DataExpert-io/data-engineer-handbook: This is a repo with links to everything you'd ever want to learn about data engineering
- duckdb DuckDB An in-process SQL OLAP database management system
- Data Modelling Things I Learned about Data Modelling | LinkedIn
- One Big Table (OBT) approach <u>Designing One Big Table (OBT)</u>. It's a Big A\$\$ Table | by Leo Godin | Medium

