

Zwischenstandpräsentation Forschung und Entwicklung Untersuchung des Funkstandards LoRaWAN

Vorstellung – Patrick Pietsch

- 2005 Fachinformatiker Anwendungsentwicklung
- 2011 Selbständig mit der Firma webseitekaufen.de
- 2017 Bachelor Wirtschaftsinformatik HTWD
- Aktuell Master Schwerpunkt Wirtschaftsinformatik

Stakeholder

LoRaWAN FuE (Prof. Vogt) Philipp Näke, Dmitriy Batov, Patrick Pietsch

AgTech and
The Things Network Region
Dresden community
Rikard, Daniel von Bahder

Fakultät Elektrotechnik HTWD

HTW Berlin

RhönEnergie Fulda-Gruppe

Kirchenvorstand Königstein

WildWeideHüten Sächsische Schweiz e.V. Projektgruppe WWH-App

- 1 Gateway LoRaWAN
- 2 Messdaten Erfassung
- 3 Messdaten Darstellung
- 4 Digitalisierung Weide
- 5 Ausblick

1. Gateway LoRaWAN

- SRD-/ISM-Band (868 MHz)
- hohe Reichweite bei geringem Energiebedarf
- Chirp-Spread-Spectrum-Modulation

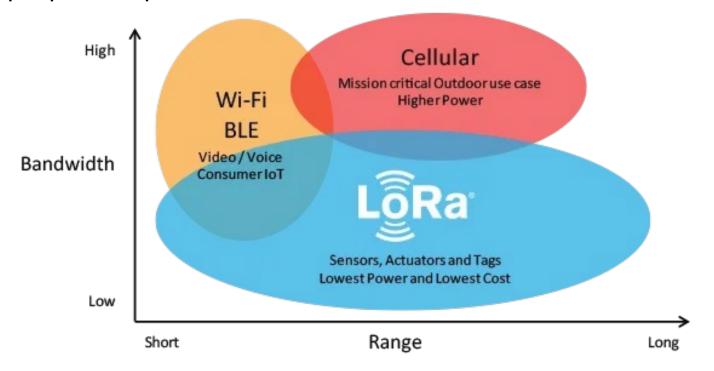


Bild: The Things Industries, https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/bandwidth-vs-range.png

LoRaWAN

- LoRa + Netzwerk = Long Range Wide Area Network
- The Things Network (TTN): freies LoRaWAN-Netzwerk

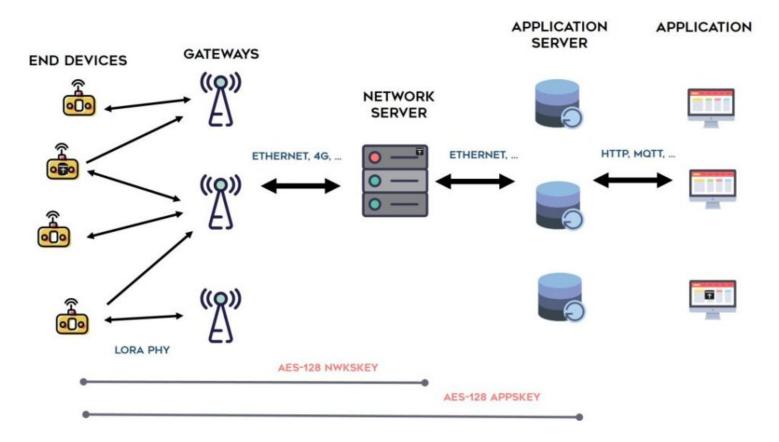


Bild: Zerynth srl, https://www.zerynth.com/wp-content/uploads/2017/05/lorawan-architecture-970x531.jpg

Gateway an der HTW

HOCHSCHULE FÜR
TECHNIK UND WIRTSCHAFT
DRESDEN
UNIVERSITY OF APPLIED SCIENCES

- Antenne auf Südende S-Gebäude
- frei für jeden zur Datenübertragung nutzbar
- Pakete empfangen: ca. 45 / h
- Pakete gesendet: ca. 2 / h

Bild: OpenWRT, https://openwrt.org/_media/media/dragino/dragino lps8 board front.jpg

The Things Network v2 vs. v3

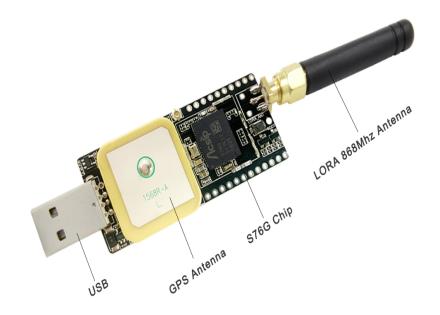
		Gateway	
		v2	v3
Endgerät Nutzer	v2	✓	× / <u>∧</u>
	v3	✓	✓

Gateway HTW auf v3

Time	Туре	Data preview
↑ 01:46:36	Receive uplink message	JoinEUI: 70 B3 D5 7E D0 02 2D 47 DevEUI: 70 B3 D5 7B
? 01:46:35	Receive gateway status	Metrics: { ackr: 100, rxfw: 2, rxin: 2, rxok: 2, txin
↑ 01:46:29	Receive uplink message	JoinEUI: 70 B3 D5 7E D0 02 2D 47 DevEUI: 70 B3 D5 7B
↑ 01:46:18	Receive uplink message	DevAddr: 26 01 2E AF FCnt: 1356 FPort: 1 MAC pay

2. Messdaten Erfassung

Sensordaten


GPS Antenne

LoraWAN Node

LILYGO®&SoftRF TTGO T-Motion S76G

GPS Positionsbestandteile:

- Altitude (Höhe);
- Latitude (Breite);
- Longitude (Länge);
- HDOP (Horizontal Dilution of Precision).

Registration der T-Motion im TTN

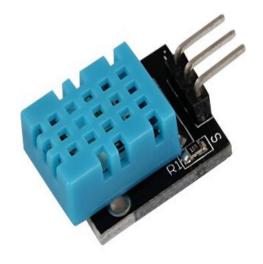
Activation information <> AppEUI 27 68 51 42 34 65 67 11 DevEUI $\langle \rangle$ 32 46 84 35 23 43 24 67 Root key ID n/a AppKey NwkKey n/a Session information Device address 26 0B 4E A6 $\langle \rangle$ NwkSKey SNwkSIntKey NwkSEncKey AppSKey

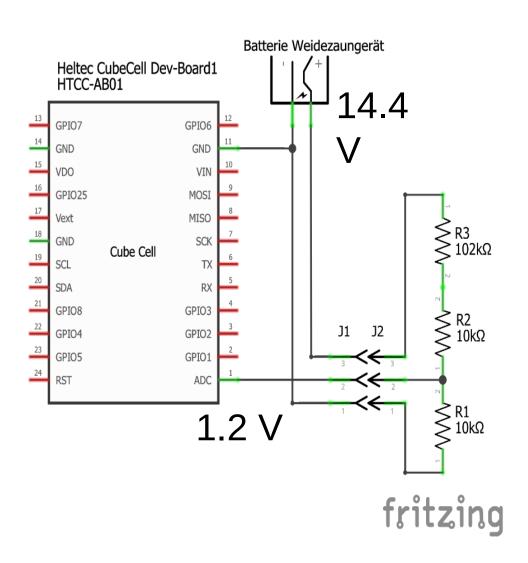
Sendungsprotok ollen:

- OTAA;
- ABP.

GPS Positionssendung


```
Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:10:15 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:09:40 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:09:03 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:08:27 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:07:51 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:07:14 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:06:39 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:06:01 Forward uplink data message
                                            Payload: { altitude: 102.2, bytes: [...], hdop: 5.11, latitude: 51.038718, longitude: 13.814262 }
↑ 15:05:25 Forward uplink data message
```



HelTec CubeCell ist ein Arduinokompatibles LoRa-Modul basierend auf einem Semtech SX1262 Transceiver und einem Cypress **PSoC 4 Mixed-**Signal-Mikrocontroller.


DHT 11 Sensor

Für Temperatur- und Feuchtigkeitsmess ung

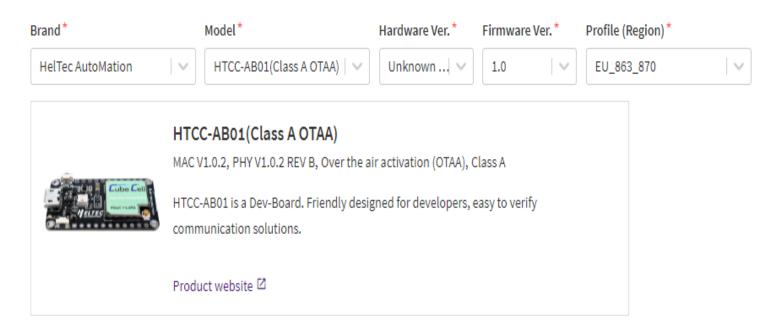
Spannungsmessung

Man muss die Spannung von 0 V bis 14.4 V messen.

Wie kann man alles einstellen?

T-Motion und Cubcell sind mit Arduino kompatibel

- LoRaWan_APP.h
- DHTesp.h
- Lmic.h
- TinyGPS.h
- SPI.h


HelTec CubeCell Regestrierung

Register end device

From The LoRaWAN Device Repository Manually

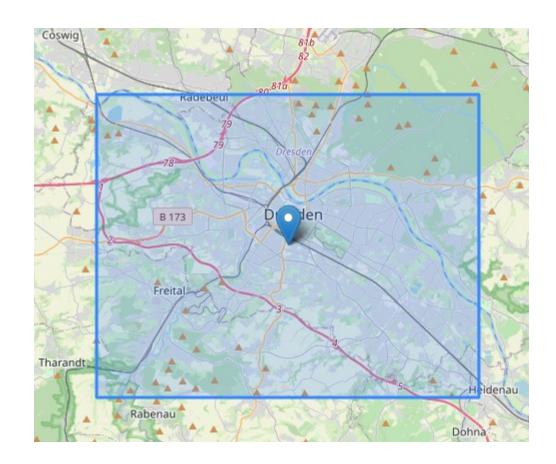
1. Select the end device

Datendarstellung in The Things Network

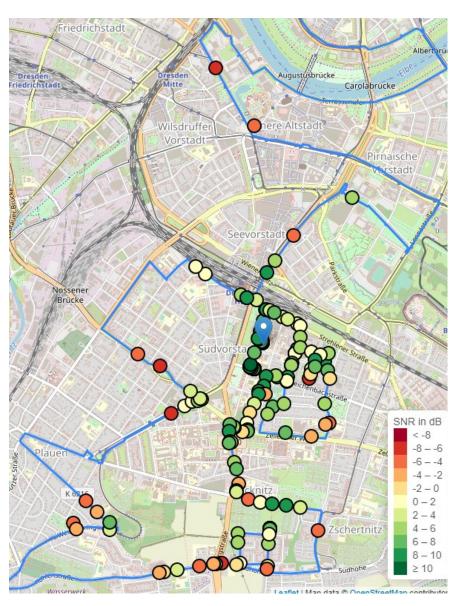
Last seen 1 second ago ↑16 ↓9

Overview Live data Messaging Location Payload formatters Claiming General settings

Time	Туре	Data preview
1 5:37:39	Forward uplink data message	Payload: { bytes: [], humidity: 50, temperature: 26, voltage: 1.5 } 32 1A 00 15 00 00
↑ 15:37:23	Forward uplink data message	Payload: { bytes: [], humidity: 50, temperature: 26, voltage: 1.5 } 32 1A 00 15 00 00
1 5:37:06	Forward uplink data message	Payload: { bytes: [], humidity: 50, temperature: 26, voltage: 1.5 } 32 1A 00 15 00 00

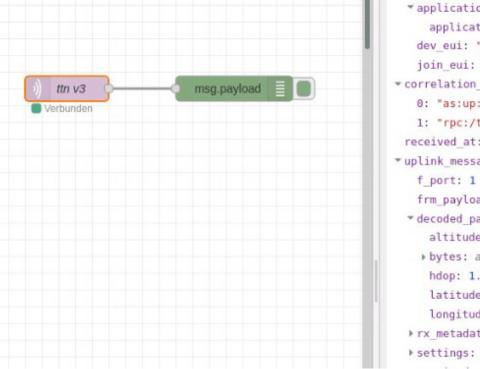

3. Messdaten Darstellung

Datenkomprimierung

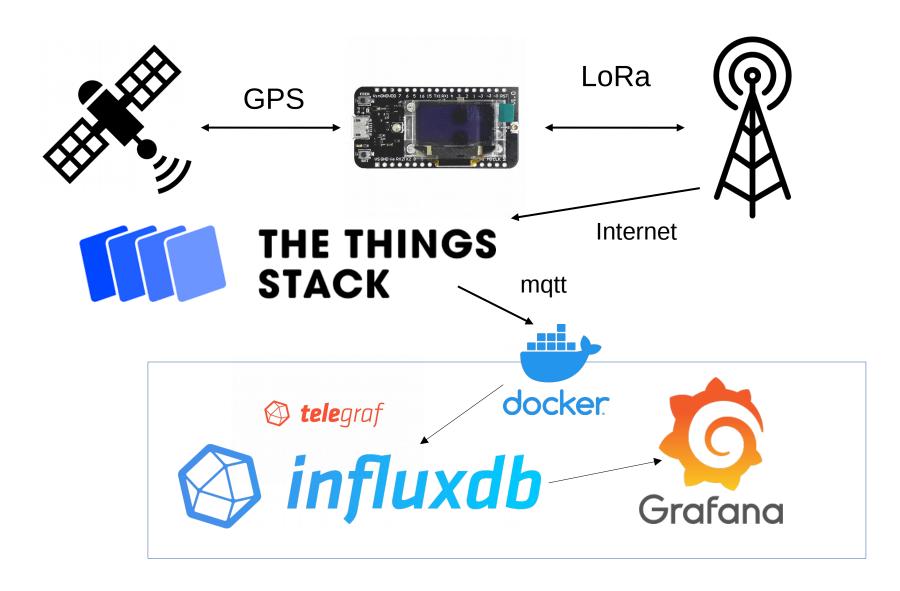

- Duty Cycle begrenzt: gesetzlich (1%) und durch Fair Use (30s / 24h)
- kürzere Übertragungsdauer
- geringerer Energiebedarf

- Nutzung relativer
 Koordinaten für GPS, z. B.
 Bereich ca. 20 km · 15 km
- Senkung Genauigkeit

Reichweitenmessung Gateway

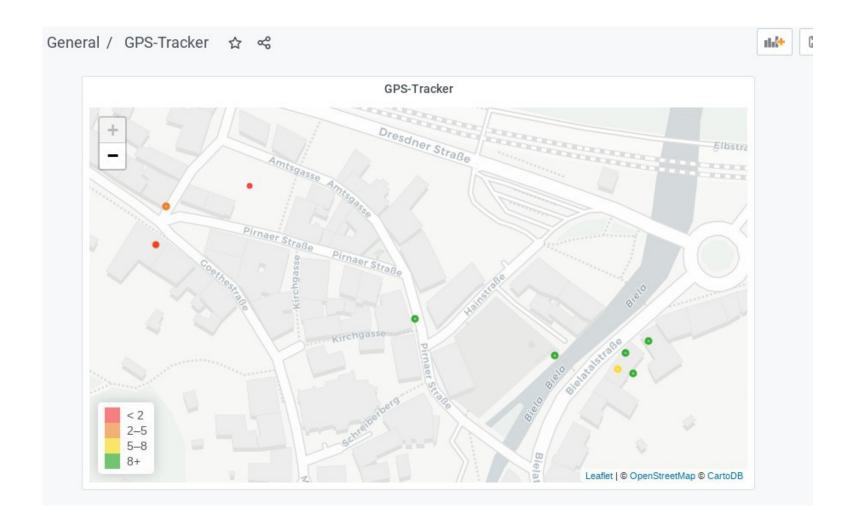


- Worst-Case-Reichweite
- Rahmenbedingungen: Fahrt per Fahrrad, sonnig, Testgerät in ca. 1m Höhe
- Ablauf:
 - Testgerät sendet per LoRa periodisch aktuelle Position
 - Gateway empfängt Pakete (falls in Reichweite), bestimmt Signalqualität
- Färbung: Signal-Rausch-Verhältnis,
 - > 0 dB: grün, besser
 - < 0 dB: rot, schlechter



- Vorhandene SW-Werkzeuge nutzen um Messdaten zu verstehen und darzustellen
- Dabei Arbeiten mit Node-Red (mqtt)
- Austausch mit HTW Berlin, Studienarbeit


```
▼application ids: object
     application id: "lora-app"
   dev eui: "3246843523432467"
   join eui: "2768514234656711"
▼ correlation ids: array[2]
   0: "as:up:01F8AGM92YBV09HWVHGT5NSEVR"
   1: "rpc:/ttn.lorawan.v3.AppAs/SimulateUplink:26
 received at: "2021-06-16T13:37:04.095491190Z"
▼uplink message: object
   frm payload: "RMAAH8AA"
  * decoded payload: object
     altitude: 12.6
   bytes: array[6]
     hdop: 1.37
     latitude: 51.03563
     longitude: 13.73447
 rx metadata: array[1]
  ▶ settings: object
```

- Konfigurationsdatei
- Zugang Gerät
- Optional: Gateway, Startposition der Karte

```
(base) patu@thinkpad:~/Daten/Entwicklung/docker/loradash$ ./run.sh
influxdb uses an image, skipping
influxdb cli uses an image, skipping
telegraf uses an image, skipping
grafana uses an image, skipping
loradash influxdb 1 is up-to-date
Creating grafana
Creating loradash influxdb cli 1 ... done
Creating loradash telegraf 1
Attaching to loradash influxdb 1, loradash influxdb cli 1, grafana, loradash telegraf 1
                 installing grafana-clock-panel @ 1.1.3
                 from: https://grafana.com/api/plugins/grafana-clock-panel/versions/1.1.3/download
grafana
grafana
                 into: /var/lib/grafana/plugins
grafana
 nfluxdb cli 1
                 Error: instance at "http://influxdb:8086" has already been setup
                 See 'influx setup -h' for help
                 ts=2021-06-16T16:12:08.190543Z lvl=info msg="Welcome to InfluxDB" log id=0UmPM0VW000 version=2.0.3
4d346df build date=2020-12-15T01:00:16Z
                 ts=2021-06-16T16:12:08.215000Z lvl=info msg="Resources opened" log id=0UmPM0VW000 service=bolt path=
fluxdbv2/influxd.bolt
                 ts=2021-06-16T16:12:08.217942Z lvl=info msg="Migration \"initial migration\" started (up)" log id=0
 service=migrations
                 ts=2021-06-16T16:12:08.260021Z lvl=info msg="Migration \"initial migration\" completed (up)" log id=
00 service=migrations
                 ts=2021-06-16T16:12:08.260081Z lvl=info msg="Migration \"add index \\\"userresourcemappingsbyusering
 started (up)" log id=0UmPM0VW000 service=migrations
```


4. Digitalisierung Weide

Problemstellung

- Die Tiere brechen aus oder es dringt etwas ein
- Tiere verheddern sich und verenden qualvoll
- Um das zu vermeiden, müssen Landwirte, Züchter und Tierhalter regelmäßig ihre Weidezäune Kontrollieren
- Das kostet Zeit und damit Geld

Marktanalyse / Existierende Lösungen

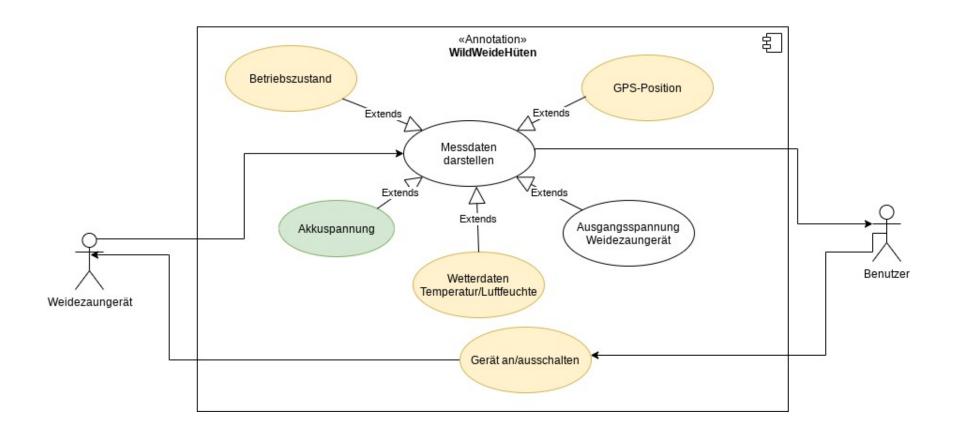
- Marktanalyse / Existierende Lösungen
- Auf Basis von Mobilfunk → in vielen Regionen beispielsweise in Königstein OT Hütten, nicht vorhanden
- Teure und abhängige Verträge von Anbieter
- Komplettlösung samt eigenem Weidezaungerät
- Anbieter horizont,
 Ako Fence...

Foto: himps-App von horizont

Lösungen mit LoRaWAN

- Energiesparsame und Kostengünstige Lösung
- Einziges aktuelles Projekt
 - RhönEnergie Fulda
- Hauptherausforderung
 - Zaunspannung (10 kV) messen

Foto: Wendelin von RhönEnergie Fulda GmbH


Upgrade mit LoRaWAN

Anwendungsfalldiagramm

5. Ausblick

- Reichweitenmessung DD
- Reichweitenmessung Königstein
 - Ausbreitung im Elbtal
- Einrichtung Gateway Königstein (Festung?)
- Darstellung Messdaten im Grafana + Alerts
- Aufbau eigenes LoRa-Netzwerkes?
- LoRaWAN Network Server stack
 - https://www.chirpstack.io/

Fragen + Diskussion?

