Fahrdrahtschäden in Strecken- trennungen – Härte und Zugfestigkeit

Patrick Hayoz, Urs Will, Bern; Ralf-Dieter Rogler, Gerd Kitzrow, Dresden; Frank Pupke, Köln

In Laborversuchen wurde die unterschiedliche thermische Stabilität mehrerer Fahrdrahtwerkstoffe gegen Erweichung durch Rekristallisation nach zehnminütiger lokaler Stromerwärmung hervorgerufen durch stillstehende Stromabnehmer untersucht. Die Verwendung der Legierungen CuAg0,1 oder VALTHERMO® anstatt Cu-ETP erhöht den zulässigen Strom nach zehnminütiger Einwirkung um 32 bis 55%. Dies wird durch die höhere thermische Stabilität dieser Legierungen gegenüber Erweichung durch Rekristallisation bewirkt. Weiterhin ist das Verschleißverhalten dieser Legierungen günstiger und verlängert die Lebensdauer der Fahrdrähte. Bereits relativ geringe Stromstärken können im Stillstand zu lokaler Erhitzung und Entfestigung von Fahrdrähten führen.

CONTACT WIRE DAMAGE AT INSULATED OVERLAPS – HARDNESS AND STRENGTH

The different thermal stability of diverse contact wire materials against softening by re-crystallization after a 10-minutes local current heating caused by pantograph standstill was investigated in laboratory tests. As a result the limiting conditions of the current carrying capacity depending on the material of the contact wire were found. Therefore, it is possible to increase the permitted current by 32 to 55% using adequate thermally stable copper alloys with highest conductivity in comparison with pure electrolytic copper.

DÉGÂTS À LA LIGNE DE CONTACT DANS LES SECTIONEMENTS – DURETÉ ET RÉSISTANCE À LA TRACTION

La stabilité thermique des différents matériaux de fil de contact contre le ramollissement par recrystalisation, dû au réchauffement par un courant d’une durée de 10 minutes, a été analysée en laboratoire pour le cas d’un arrêt de pantographe sous un sectionnement. Pour les matériaux différents, les paramètres limitant la capacité de courant ont été déterminés. En adoptant des alliages de cuivre de stabilité thermique élevée et – simultanément – de bonne conductivité électrique, la capacité de courant peut être augmentée de 32% à 55% par rapport au cuivre électrolytique pure.

1 Einführung

Auf Grund von Störfällen bei der Schweizerischen Bundesbahn SBB, wobei lokale Überhitzung von Fahrdrähten bei unter Streckentrennungen stillstehenden Stromabnehmern zu deren Bruch führten, startete die SBB ein Projekt mit Furren+Frey, HTW Dresden und nkt cables GmbH zur Untersuchung der Ursachen [1].

Für diese Versuche stellte nkt cables Fahrdrähte aus mehreren Werkstoffen und mit unterschiedlichen Maßen zur Verfügung, die in einem Labor der HTW Dresden lokal an der Kontaktstelle Fahrdraht – Schleifstück durch Stromdurchgang auf kontrollierte Temperaturen erhitzt wurden. Die Untersuchungen zum Grad der dadurch bedingten Materialschädigung führte nkt cables durch.

2 Rekristallisationseigenschaften und Kriechverhalten der Fahrdrahtwerkstoffe

Fahrleitungsanlagen

Bild 1:
Verschleißraten von Fahrdrahten in der Paarung mit Kohleschleifstückchen SK01 gemessen auf dem Prüfstand der Firma Hoffmann Elektrokoche [7].
blau Verschleiß V_{st}, Fahrdraht in mm2 je km
rot 103 Stromabnehmer-Durchgänge
Verschleiß V_{st} Kohle in mm3 je km
beschliffener Fahrdrahtlänge, Werkstoffe siehe Tabelle 1
Cu-ETP
CuAg0,1
CuMg0,2
CuMg0,5
CuSn0,2
VALTHERMO
CuAg0,1 400-

Bild 2:
Vergleich der Kriechdehnung e von Fahrdrahten AC-100 aus unterschiedlichen Werkstoffen, Nachspänkkraft 10kN, Messung 87 Tage nach dem Verlegen, Einbauort DB Köln. Werkstoffe siehe Legende Bild 1

dungsfall abhängig. Kriterien dafür sind unter andern die erforderliche Zugfestigkeit, die elektrische Leitfähigkeit, die Verschleißverhalten, das Kriechverhalten und die benötigte thermische Beständigkeit gegen Entfestigung durch Rekrystallisation.
Mit Rekrystallisation wird der thermisch aktiviert Umwandlungsprozess bezeichnet, bei dem sich das harte, kaltverfestigte Kristallgefüge bei erhöhter Temperatur wieder in ein weiches Gefüge umwandelt – rekrystallisiert. Zur Charakterisierung der thermischen Stabilität gegen Rekrystallisation wird der Halbhartpunkt, auch Rekrystallisationstemperatur, herangezogen. Dieser ist die Temperatur einer Wärmebehandlung mit 60 min bis 90 min Haltezeit, bei der die anschließend bei Raumtemperatur bestimmte Zugfestigkeit auf den Mittelwert zwischen dem harten Ausgangszustand und dem weichen, vollständig rekrystallisierten Zustand gesunken ist.

Durch das Legieren mit Silber wird der Halbhartpunkt, der bei Fahrdrahten aus Kupfer ETP abhängig vom Reinheitsgrad typisch bei 180 bis 220° C liegt, auf 300 bis 320° C erhöht, wie aus [4; 5] und internen Untersuchungen von nkt cables hervorgeht. Durch die Silberzusätze bleibt die elektrische Leitfähigkeit gegenüber reinem Kupfer praktisch gleich und die Verschleißeigenschaften verbessern sich jedoch, was im Wesentlichen auf die höhere thermische Stabilität zurückzuführen ist. Die elektrische Komponente des Verschleißes nimmt ab. Im Falle von CuMg und CuSn Lagierungen mindern die höhere Zugfestigkeit und höhere Härte auch die mechanische Komponente des Verschleißes.

Als Alternative zum Fahrdraht aus CuAg0,1 entwickelte nkt cables eine neue Kupferlegierung unter dem Namen VALTHERMO°. Diese Legierung ohne das teure und preislich hochvolatil Silber zeigt bei der Verwendung für Fahrdraht mindestens genau so gute elektrische und mechanische Eigenschaften wie CuAg0,1. Der Halbhartpunkt von VALTHERMO-Fahrdrahten liegt wie bei CuAg0,1 auch bei 320°C. Bei Verschleißuntersuchungen auf einem Prüfstand der Firma Hoffmann Elektrokoche wurde unter den Bedingungen des COSTM-Projects [6] eine gegenüber CuAg0,1 um 15% verringerte Verschleißrate gefunden (Bild 1). Als Kohleverzug wurde bei diesen Untersuchungen SK01 verwendet [7]:
* Spezifischer elektrischer Widerstand 35 μΩm
* Rockwell Härte nach DIN IEC 60413:1990 5/150

Die Verbesserung der thermischen Stabilität durch Legieren führt bereits ohne Festigkeitsteigerung auch zu einer verbesserten Kriechbeständigkeit. Unter Kriechen wird hierbei die langsame plastische und bleibende Verformung unter Zugbelastung verstanden. Im Falle von Fahrdrahten führt die permanent anliegende Zug-
spannung zu einer bleibenden Drahtverlängerung, die bei reinem Kupfer häufig bereits einige Wochen nach der Installation eine Nachregulierung der Fahrleitung mit Korrektur der Hängerschrägestellung und Einkürzen der Seile an den Abspangeleitungen erforderlich macht. Dies kann durch den Einsatz von Legierungen stark reduziert werden. Die Kriechraten von CuAg0,1, CuMg0,2 sowie VALTHERMO liegen bei nur 25 bis 40% derjenigen von reinem Kupfer (Bild 2).

3 Stromtragfähigkeit von Fahrdrähten bei gleichmäßiger Stromerwärmung

Wegen der erhöhten thermischen Stabilität der Kupferlegierungen gegen Rekrystallisation werden die maximal zulässigen Temperaturen höher als für Cu-ETP angesetzt. So findet man in EN 50119:2013 [8] für Cu-ETP 80°C und für CuAg0,1 100°C als maximal zulässige ständige Betriebsbedingung. Bild 3 zeigt die Stromtragfähigkeit verschiedener Werkstoffe und Maße auf Basis der maximal zulässigen ständigen Betriebsbedingungen.

Bei Belastung bis zu 30 min für den Fall des Stromabnehmerraststandes werden in [8] 120°C für Cu-ETP und 150°C für CuAg0,1 als maximale Temperaturen genannt. In Anbetracht der Unterschiede in der Rekrystallisationstemperatur (Halbhartpunkt) erscheinen 30°C Differenz als zu gering. Die Legierungen CuAg0,1 und VALTHERMO haben hier noch Reserven, während Kupfer ETP insbesondere bei eventueller häufiger Mehrfachbelastung an der gleichen Stelle bei 120°C bereits kumulativ geschädigt werden kann.

Für die in [2] beschriebenen Untersuchungen wurden Fahrdrahtleisten aus den Werkstoffen
- Cu-ETP (Tabelle 1, Nr. 1 und 9),
- CuAg0,1 (Tabelle 1, Nr. 2),
- CuAg0,1 hochfest 400+ (Tabelle 1, Nr. 7) und
- VALTHERMO (Tabelle 1, Nr. 6 und 8)
verwendet.

Bei CuAg0,1 hochfest 400+ handelt es sich um einen Fahrdraht aus CuAg0,1, dessen Zugfestigkeit durch spezielle Verarbeitungsprozesse um 10% gegenüber dem in EN 50149 [3] definierten Wert gesteigert wurde und Werte über 400 MPa erreicht.

Durch die Untersuchungen sollte ermittelt werden, inwieweit die Legierungen erhöhten lokalen thermischen Kurzzeitbelastungen ohne signifikante Materialschädigung standhalten.

![Bild 3: Vergleich der Dauerstromtragfähigkeit J_{10} von Fahrdrahten aus unterschiedlichen Werkstoffen bei 80°C (blau) und 100°C (rot), Umgebungstemperatur 40°C, Windgeschwindigkeit 0,6 m/s. Werkstoffe und Maße siehe Tabelle 1](image1)

![Bild 4: Maßgebende Endtemperatur \(\theta_e \) als Funktion der Stromstärke \(I \) für den Versuchsauflauf in der HTW Dresden bei 10-minütiger Erwärmung, Umgebungstemperatur 20°C.](image2)

4 Warmfestigkeit und Rekrystallisation bei lokaler Erwärmung, Zugversuche

4.1 Probenherstellung

Nachdem die Warmfestigkeit mehrerer Fahrdrahtproben bei der HTW Dresden untersucht wurde [2], wurden die Auswirkungen lokaler Erwärmungen durch stillstehende Stromabnehmer, die noch nicht zum Durchschmelzen des Fahrdrahtes unter Zugbelastung führen, auf Härte und Zugfestigkeit untersucht.

Die Fahrdrahtproben wurden auf einem Versuchsstand der HTW Dresden an einer Fahrdraht-/Schleifleisten-Kontaktschneide mit einem konstanten elektromagnetischen Strom beaufschlagt. Zuvor wurde dort für die verschiedenen Fahrdrahtleisten eine Kennlinie

4.2 Versuchsdurchführung

Die von der HTW Dresden wärmebehandelten, 700 mm langen Proben wiesen alle eine Brennstelle auf, die jeweils an der Unterseite des Fahrradprofils mittig im Probestück lag (Bild 5). Von dieser Brennstelle ausgehend wurden in 20, 40, 60, 150 und 330 mm Abstand auf jeder Seite jeweils fünf Messpunkte zuzüglich der Brennstelle selbst für die Ermittlung der Brinellhärte HB31,25 definiert (Bild 5). Da neu hergestellte Fahrräder ohne Verschleißeinwirkung verwendet wurden, ist nur mit einem annähernd linearen Kontakt zu rechnen. Die Oberflächenhärte wurde immer auf der Unterseite des Fahrradprofils gemessen. Nach den Härteprüfungen wurde die Zugfestigkeit an den Proben gemessen. Es wurde jeweils die gesamte 700 mm lange Probe in die Zugprüfmaschine eingespannt, um die schwächste Stelle der gesamten Probe zu ermitteln. Hierbei wurde nicht die Warmzufestigkeit bei erhöhter Temperatur gemessen, sondern die Zugfestigkeit bei Raumtemperatur nach der Wärmebehandlung. Damit sollte der Schädigungsgrad durch die lokale Erhitzung ermittelt werden. Für die Härte- und
Zugprüfung stand je Werkstoff und Temperaturstufe nur jeweils eine lokal erhitzte Probe zur Verfügung. Die Messresultate unterliegen daher der üblichen Streuung.

Ziel für den praktischen Fahrbetrieb ist es, Strombelastungen mit Materialschädigungen zu verhindern, die einen Austausch des Fahrdrähtes nach längerem Stromabnehmerstillstand erforderlich machen würden. Unter Materialschädigung wird hier ein teiles des oder vollständiges Erweichens des Materials durch Rekrystallisation verstanden. Hierfür sollte der Unterschied zwischen Legierungen wie CuAg0,1 oder VALTHERMO und reinem Kupfer ETP mit gleicher elektrischer Leitfähigkeit quantifiziert werden.

4.3 Prüfergebnisse

4.3.1 Brinellhärte

In den Bildern Bild 6a bis 6e sind die Ergebnisse der Brinell- Härte- Messungen dargestellt. Dabei wurden die Werte innerhalb und außerhalb der Wärmeinflusszone jeweils gemittelt. Eine starke Entfestigung der Oberfläche im Bereich der Wärmeinflusszone auf 57 HB31,25 ist im Härteverlauf nur bei Cu-ETP AC-120 bei 270°C (Bild 6a) zu erkennen.

4.3.2 Zugfestigkeit

Der Grad der Materialschädigung durch Rekristallisation lässt sich deutlicher aus den Zugfestigkeiten ableisen, da hier im Gegensatz zur Oberflächen-Härteprüfung die Festigkeit über den gesamten Fahrdrähterauchschnitt an der am stärksten geschädigten Stelle bestimmt wird. Im Ausgangszustand zeigen hart gezeugte Fahrdrähte aus den hier untersuchten Werkstoffen typische Zugfestigkeiten über 370 MPa (Bild 7). Im vollständig rekristallisierten Zustand liegt die Zugfestigkeit für alle untersuchten Werkstoffe bei 250 MPa.

Damit wird ersichtlich, dass bei Cu-ETP AC-120 die 10- minimale Belastungsgrenze erst oberhalb 210°C entsprechend 90 A erreicht würde.

Für Fahrdrähte AC-120 aus CuAg0,1 und VALTHERMO liegt diese Belastungsgrenze im Versuch bei oberhalb 270°C entsprechend über 119 A.

Die Rekristallisationstemperatur nach 90min Wärmebehandlung liegt für Cu-ETP bei rund 180 bis 220°C je nach Reinheitsgrad und für CuAg0,1 sowie VALTHERMO bei rund 320°C. Zusammen mit der Temperatur-Strom-Kennlinie gemäß Bild 4 folgt daraus, dass für AC-120 aus VALTHERMO und CuAg0,1 die tatsächliche Belastungsgrenze unter den hier gewählten Versuchsbedingungen eher bei rund 320°C entsprechend rund 140 A für die zehnminütige lokale Erwärmung zu erwarten ist.

4.3.3 Temperaturbeständigkeit bei homogener Erwärmung

Um die härtebezogene Temperaturbeständigkeit der verschiedenen Werkstoffe bei homogener Erwärmung mit der lokalen Erwärmung zu vergleichen,
Bild 6:
Brinellhärte HB Prüfkraft 31,25 N abhängig von der nach 10 min erreichten Temperatur δ, Messungen innerhalb und außerhalb der Wärmeinflusszone, Werkstoffe siehe Tabelle 1.

- Blau: Mittelwert innerhalb der Wärmeinflusszone
- Rot: Mittelwert außerhalb der Wärmeinflusszone
- Grün: Minimum
- Violett: Maximum

- a) 9 Fahrradstahl Cu-ETP AC-107
- b) 7 Fahrradstahl Cu-ETP AC-120
- c) 6 Fahrradstahl VALTHERMOC-AC-120
- d) 8 Fahrradstahl VALTHERMOC-120
- e) 2 Fahrradstahl CuAg0,1 AC-120
- f) 7 Fahrradstahl Cu AG0,1 400+AC-120
wurde von vier Fahrdrähten je eine unbe lastete Pro
be für 90 min bei 245 °C im Labor-Heizschrank wär
mebehandelt. An diesen Proben wurde nach Abküh
len die Brinellhärte HB31,25 gemessen.

Cu-ETP BC 107 zeigte nach der Wärmebehand
lung 245 °C, Dauer 90 min. dabei Brinellhärten im
Bereich von 50 HB31,25 vollständig entfestigt.
Alle anderen, legierten Materialien zeigten Werte
um rund 100 HB31,25 und somit keine Entfesti
gung (Tabelle 3).

5 Schlussfolgerungen für die Materialauswahl

Zusammenfassend ergibt sich aus den Versuchen eine Erhöhung der zulässigen Stromgrenze bei
10 min Gesamtleistungsdauer um 32 bis 55 %
don den Einsatz von CuAg0,1 oder gleichwertig
VALTHERM0 gegenüber Cu-ETP. Dies wird durch die
höhere thermische Stabilität dieser Legierungen ge
genüber Erweichung durch Rekristallisation bewirkt.
Weiterhin ist auch eine durch das unterschiedliche
Verschleißverhalten bedingte Verlängerung der Le
bensdauer der installierten Fahrdrähte durch Ver
wendung der untersuchten Kupferlegierungen an
telle von Cu-ETP zu erwarten. Dem Sachverhalt der
Materialschädigung durch lokale Erhitzung und Ent
festigung durch bereits relativ geringe Stromstärken
ist besondere Beachtung zu widmen.

Die Autoren wurden in Heft 4/2013, Seiten 263–266
vorgestellt.

Literatur
H. 11, S. 640–646.
lagen – Elektrischer Zugbetrieb – Rillen-Fahrdraht aus Kupfer und Kupferlegierungen:
barkeit von Fahrleitungen. In: Schweizer Archiv für an
contact strip materials – Testing of wear. In: Elektrische
[7] Untersuchungsbericht im Auftrag von nkt cables GmbH:
Tests am Schleifkohleprüfstand Hoffmann mit verschie
denen Fahrdrähten von NKT-Cables. Hoffmann Elektro
kohle AG, 2012.
gen – Oberleitungen für den elektrischen Zugbetrieb.
leitungen elektrischer Bahnen. Erlangen, Verlag Publicis Publish
ing, 2014.