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Abstract. This paper shows three approaches for detecting stegano-
grams with low change density. MP3Stego is a steganographic algorithm
with a very low embedding rate. The attack presented here is a statistical
analysis of block sizes. It is able to detect 0.001 % of steganographic
payload in MP3 files. The second approach is the use of hash functions
to combine sample categories for the chi-square attack. One of these
hash functions enables us to detect about 0.2 bits per pixel in true colour
images. Another algorithm (Hide) was presented at the last workshop and
constructed to be secure against visual and statistical chi-square attacks.
The detection method for Hide combines the three colour components of
each pixel to recognise an increased number of “neighbour colours”.

1 Introduction

Steganographic tools change bits in a carrier medium to embed a secret mes-
sage. Whether these changes are noticeable to an attacker or not, depends on
many different things. The embedding function must keep certain properties the
attacker knows about carrier media. If an attacker has a better model for the
carrier media, the person who implements the tool cannot be sure about the
security of the algorithm.
There are two kinds of attacks: On the one hand there are attacks that prove

the use of a steganographic tool without error, e. g. specially produced palettes
that occur only with S-Tools resp. Mandelsteg and so on [5]. On the other hand,
most statistical attacks have a probability of error larger than 0. If we embed less
and spread the changes over the carrier medium we decrease the change density.
The lower the change density the higher the probability of error.
A lower change density decreases the probability of detection, although this

decreases the steganographic capacity as well. As we will see, the question is not
how much data is embedded, but how much the carrier is changed. Sect. 2 gives
an example of a tool with only limited steganographic payload (less than 0.1%),
and with surprisingly strong changes per embedded bit—although imperceptible
by human ears. Maybe its low capacity kept away potential attackers. (Some
years ago, I looked at this tool through the glasses of one specific vulnerability
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that many simple tools have. But this attack did not match the embedding
algorithm of MP3Stego.)
The main issue of Sect. 3 is the definition of categories for the chi-square

attack. Building a direct histogram of samples will lead to a significant statement
only if there are at least 97% of the samples steganographically used. This is the
case if the message was continuously embedded, or if we know the embedding
places. It is necessary to guarantee one embedded bit per observed value.
Finally, Sect. 4 explains an attack on Hide, a steganographic tool presented by

Sharp [11] at the last workshop. Hide uses an algorithm secure against statistical
chi-square attacks [12]. It does not simply overwrite the least significant bits.
Nevertheless, it is detectable.

2 MP3Stego

MP3Stego is a modified version of the 8HZ-mp3 [1] encoder. It reads Windows
WAV files (RIFF-WAVE-MSPCM) and encodes them as MPEG Audio Layer-3.
WAV files from audio CDs typically contain digital audio signals that consist
of 16 bit samples recorded at a sampling rate of 44.1 kHz. So we end up with
2× 705.6 kbits/s in these WAV files. Using the command

encode example.wav example.mp3

these sound data are reduced by a factor of 11. The resulting MPEG Layer-3
stream in the MP3 file still maintains the same sound quality with only 128
kbits/s. This is realised by perceptual coding techniques addressing the per-
ception of sound waves by the human ear. Compared with other audio coding
schemes, MP3 files achieve the highest sound quality for a given bit rate. Because
of this, the MP3 file format is very popular and it is a great idea to use it for
steganography. With MP3Stego [6] we can embed a file (e. g. hidden.txt) in the
Layer-3 stream while encoding a WAV file. In a first step, the tool compresses
the file to hide using zlib [9]. A passphrase (e. g. abc123) is used to encrypt the
compressed message with triple-DES and to dilute the changes pseudo-randomly:

encode -E hidden.txt -P abc123 example.wav example.mp3

The heart of a Layer-3 encoder is a system of two nested iteration loops for
quantisation and coding. The inner iteration loop (cf. Fig. 1) finds the optimal
quantisation parameter (q factor). If the number of bits resulting from the quan-
tisation (block length) exceeds the number of bits available to code a given block
of data (max length), this can be corrected by adjusting the global gain to result
in a larger q factor. The operation is repeated with increasing q factor until the
resulting block is smaller than max length.
Without embedding, the iteration will end as soon as the block length is not

larger than the specified max length. The parameter hidden bit is 2 if a block
should bypass the steganographic processing after finding this optimal size.
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int inner_loop(int max_length, int *q_factor, int hidden_bit)

{

int block_length;

*q_factor -= 1;

/* increase q_factor until block_length <= max_length */

do {

*q_factor += 1;

block_length = quantize();

switch (hidden_bit) {

case 2: /* nothing to embed */

embed_rule = 0;

break;

case 0: /* embed 0 */

case 1: /* embed 1 */

embed_rule = (block_length % 2) != hidden_bit;

break;

}

} while ((block_length>max_length) || embed_rule);

return block_length;

}

Fig. 1. The modified inner iteration loop of the Layer-3 encoder (simplified)

2.1 Embedding Algorithm

In case hidden bit is 0 or 1, the inner iteration loop will continue until a q factor
is found that produces an even or odd block length respectively. The final
block length is not larger than the specified max length. (In rare cases this is an
endless loop if the block length is already 0 and hidden bit is 1.) We should take
into consideration that incrementing the q factor by 1 does not automatically flip
the least significant bit (LSB) of the block length. In most cases the block length
will decrease by a value larger than one. So if we want to embed a hidden bit, the
LSB of the block length could remain the same for several iterations. The per
track maximum of such unsuccessful series is 12. . . 18 (consecutive) iterations on
an average CD.
Although the quality of some frames is artificially decreased by messages em-

bedded with MP3Stego, you probably need golden ears to notice that. Without
the original music file it is difficult to distinguish between background noise and
steganographic changes.

2.2 Detection by Block Length Analysis

The length of steganographically changed blocks is smaller than one quantisa-
tion step size below the upper bound max length, i. e. smaller than necessary for
the requested bit rate. If max length were fixed, an MP3 file bearing a stegano-
graphic message would have a lower bit rate than a clean one. Then we could
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Fig. 2. Histogram of block length without steganography (left) and with the
maximum of embedded data (right)

just calculate the bit rate (or the mean value of the block lengths) to detect
steganographic changes. Unfortunately, max length is adjusted from frame to
frame by the rate control process to bring the bit rate of the blocks in line with
the requested average (default 128 kbps). Every time the block length is stegano-
graphically decreased, the following blocks are larger to equalise the bit rate. At
the end, the steganographic MP3 file and a clean version from the same WAV
file have equal size.
Although the mean value is the same, the variance is increased. The his-

tograms in Fig. 2 show that there is a peak at 7 (i. e. blocks with 700–799 bits),
and two accumulations at 0 and 30 (0–99/3000–3099). There are some seconds
of quietness between tracks. Each frame of digital silence contains one block of
3056 bits and three zero-length blocks. So the first and last accumulation in
the histogram is caused by the pause at the end of the track. For detection of
steganography we will only consider block lengths between 100 and 3000 bits, so
that we get a unimodal distribution with an expected block length of 764 bits.
To calculate the variance s2 we need the count of considered block lengths n,

the sum of block lengths
∑

x, and the sum of their squares
∑

x2:

s2 =
∑

x2 − 1
n (

∑
x)2

n − 1

As mentioned earlier, the max length is adjusted from block to block to get
the requested average bit rate. The initial value of max length is 764, which is
the ideal block length for 128 kbits/s. Since max length is only the upper limit
for the blocks, the first frames of the MP3 file are shorter than the average. After
getting too large, the value of max length swings in to 802 bits (or some more in
case something is embedded). This oscillation of max length causes a stronger
variance of the block length at the start of the MP3 file. Hence, the variance
depends also on the file length.
Figure 3a shows the result of four test series with 25 tracks from a mixed CD:
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1. one without a message,
2. one with an empty message,
3. one with 0.01 % steganographic contents, and
4. one with 0.05 % relative to the length of the MP3 file.

All messages were pseudo-random. MP3Stego can embed 0 bytes as the shortest
message. However, this does not mean that the MP3 file remains unchanged.
Because every message is compressed using zlib to eliminate the redundancy
before it is embedded, there are effectively more than 0 bits to embed.
If we compress a file with 0 bytes using zlib we get 24 bytes. MP3Stego

embeds these together with 4 extra bytes to store the length of the message.
The resulting 28 bytes are about 2 % of the maximum capacity in a 3 MB MP3
file, or 0.001 % of the carrier file size. Even this low embedding rate is visually
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Fig. 3. The variance of the block length depends on the file size and payload
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Fig. 4. a)Other encoders have different bit rates, or b) a characteristic rate con-
trol process, or c) produce the same bit rate like MP3Stego but are d) otherwise
distinguishable by quadratic discriminance analysis. e) low variance in a clean
MP3 file f) strong oscillation caused by 224 embedded bits (zlib-compressed
zero-length file)

different in Fig. 3b. A curve of type “A/size + B” separates all cases correctly
(a posteriori).
Now, the attack already has a good selectivity, especially if we restrict it

to the first part of MP3 files, say 500 KB. However, for an attack under “real
world circumstances” we have to recognise that a file was created using an 8HZ
compatible application ([1], [6]) and not one of the many other implementations
of MP3 encoders with their own characteristics of variance.

2.3 How To Distinguish Encoders

Figure 4a shows 1308 MP3 files of unknown origin classified by their bit rate
and size. Most of these files are on the stroke at 128 kbits/s, together with
the MP3Stego files (black bullets). Each black bullet actually stands for three
MP3Stego files: The clean version is at the same position in the diagrams as
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the versions with minimum and maximum payload. If we zoom to bit rates be-
tween 127.5 and 128.5 kbits/s (Fig. 4b) we discover that it is not just one stroke
but many different curves. Probably every encoder has its own characteristic
rate control process. The curve in Fig. 4c is the interpolated characteristic of
MP3Stego. There is only a small subset (55 of 1308) with questionable files that
could come from MP3Stego. But lets move from the macroscopic properties bit
rate and file size to individual block lengths. The following autoregressive model
explains one block size by its two predecessors.

blocki = β0 + β1 · blocki−1 + β2 · blocki−2

It is still possible to distinguish the questionable subset of unknown origin from
files encoded with MP3Stego regardless whether there is something embedded.
We apply the autoregressive model to the individual block lengths of a question-
able file first. A quadratic discriminance analysis (QDA) with the coefficients β0,
β1, and β2 can tell us whether it matches the MP3Stego rate control process or
not (Fig. 4d).

2.4 Estimating the Size of Embedded Text

In addition, we can use a plot of consecutive block lengths (Fig. 4e and f) to
estimate the size of the embedded message. Although the steganographic changes
are not dense—only up to 60% of the blocks are used—the message bits are not
uniformly spreaded over the whole MP3 file but randomly diluted with the ratio
3 : 2 (3 used, 2 skipped). We can use the following formula to estimate the length
of the embedded message in bits:

message length/bits ≈ 0.6 · last dirty block index

3 Chi-square Attack Despite Straddling

The statistical chi-square attack [12] reliably discovers the existence of embedded
messages that are embedded with tools which simply replace least significant bits
(LSBs). However, if the embedded message is straddled over the carrier medium,
and if less than 97% of the carrier medium is used, a direct histogram of sample
values will not lead to a satisfactory result. So we have to know either the
embedding sequence (which we probably do not without a secret key), or change
the categories of samples to guarantee one embedded bit per observed value.
After modifying these categories, the attack gives significant results even if

only one third of the steganographic capacity is used. It can even detect a dif-
ference between clean and steganographic images with only 5 to 10% of the
capacity used.
There have been other attempts to generalise the chi-square attack to allow

the detection of messages that are randomly scattered in the cover media. The
most notable is the work of Provos and Honeyman [8], and Provos [7]. Instead
of increasing the sample size and applying the test at a constant position, they
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Table 1. The p-value (in %) depends on the part of the capacity that is used

Exploitation of the steganographic capacity (%)
hash 100 95 94 50 33 25 16 10 5 0

a1 (w/o hash) 100 68.8 1.85 — — — — — — —
a1 + a2 100 99.9 99.8 99.5 38 4.5 0.6 — — —
a1 ⊕ a2 100 100 100 99.9 1.0 0.1 — — — —

a1 ⊕ 3a2 100 100 100 2.3 — — — — — —
a1 + a2 + a3 100 100 100 100 100 100 100 100 100 100
a1 ⊕ a2 ⊕ a3 100 100 100 100 100 100 100 100 100 100

a1 ⊕ 3a2 ⊕ 5a3 100 100 100 100 90.6 91.7 66.1 37.7 12.6 2.5
a1 + 3a2 + 5a3 100 100 100 99.9 76.1 33.9 7.4 1.1 — —

use a constant sample size but slide the position where the samples are taken
over the entire range of the image. Using the extended test they are able also to
detect messages that are not continuously embedded but spread in the carrier.
However, the resulting p-value of the chi-square test is not significant, i. e. most
of the time it is jumping in the range between 0.05 and 0.95.
Here, we unify several observed values to one with the legitimate hope to get

one steganographically used value on average. For example, if somebody uses
50% of the steganographic capacity, only every second observed value is used
for the secret message. In this case we have to combine two observed values
to one, so that we can expect one steganographic bit in the combined sample.
With the use of 33% we have to combine three observed values for the same
expectation.

3.1 Experiments

The experiments in Table 1 show that the resulting p-value all depends on how
we unify the categories, i. e. which operation we use to combine the values. The
table contains the results for 10 versions of a true colour image with different
steganographic message sizes. 100% exploitation of the steganographic capacity
means that the steganographic algorithm replaced every LSB in all pixels with
pseudorandom message bits (3 bits per pixel). 95% means that the algorithm
used only a subset of the LSBs and skipped 5% of them. The column with 0%
exploitation contains the results for the carrier medium (without any embedded
message). The 9 steganograms were created using S-Tools, although it does not
matter which tool overwrites the LSBs in true colour images.
The ai denote periodic sample values. The first line in Table 1 lists the re-

sults for the direct samples. Then there are three experiments for hashing each
two consecutive samples, and four experiments for hashing each three samples.
Let b1, b2, . . . , bn be the n bytes of the image content, i. e. the observed values.
The different hash functions combine the sample values as follows:
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a1: b1, b2, b3, . . .
a1 + a2: b1 + b2, b3 + b4, b5 + b6, . . .
a1 ⊕ a2: b1 ⊕ b2, b3 ⊕ b4, b5 ⊕ b6, . . .

a1 ⊕ 3a2: b1 ⊕ 3b2, b3 ⊕ 3b4, b5 ⊕ 3b6, . . .
a1 + a2 + a3: b1 + b2 + b3, b4 + b5 + b6, b7 + b8 + b9, . . .
a1 ⊕ a2 ⊕ a3: b1 ⊕ b2 ⊕ b3, b4 ⊕ b5 ⊕ b6, b7 ⊕ b8 ⊕ b9, . . .

a1 ⊕ 3a2 ⊕ 5a3: b1 ⊕ 3b2 ⊕ 5b3, b4 ⊕ 3b5 ⊕ 5b6, b7 ⊕ 3b8 ⊕ 5b9, . . .
a1 + 3a2 + 5a3: b1 + 3b2 + 5b3, b4 + 3b5 + 5b6, b7 + 3b8 + 5b9, . . .

3.2 Conclusions

It turns out that the hash values a1 + a2 + a3 and a1 ⊕ a2 ⊕ a3 do not dis-
tinguish anything. This wants to remind us of the “power of parity”: Anderson
and Petitcolas suggested not to embed each bit in a single pixel, but in a set of
them, and embed the ciphertext bit as their parity [2]. If a bit of ai is “1” with
probability 0.6, then the probability that the same bit of a1⊕a2 will be 1 is 0.48;
if we move to a1 ⊕ a2 ⊕ a3, it is 1 with probability 0.504, and so on. The more
observed values we combine, the more equalised our histogram will be. However,
the chi-square attack works because the histogram of observed values in cover
media is not equalised, but pairs in steganograms are. That’s probably also the
reason why all experiments to hash four values were not successful.
We can deduce the following rules from the experiments:

1. The combination of observed values should not increase the number of cat-
egories too much. Otherwise they are underpopulated. Example: If the hash
function simply concatenates the observed values (e. g., 256 · a1 + a2), we
increase the number of categories by a factor of 256 (and divide the mean
population by 256). The minimum theoretically expected frequency in a cate-
gory of the chi-square test must be at least 5. This would require a population
of 1280 or more for a1 and a2.

2. The unification should keep a lot of the entropy from the single values.
A lossless unification means to keep all the bits, e. g., by concatenation. But
a simple concatenation (cf. a), where we xor only the LSBs (s = x ⊕ y),
increases the number of categories and contradicts the first rule. So we need
to reduce the information of the higher bits using a hash function (cf. b).
The best hash function found is a linear combination with small odd factors:
– The factors have to be different to equalise the entropy of the bits
in the single values. Example: If bit 6 of the sample values has more
information than bit 7, we lose less information if we combine bit 6 with
bit 7, instead bit 6 with bit 6.

– The factors have to be small to keep the number of categories small.
– They have to be odd to project the sum of the LSBs into the LSB.
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This distinguishes best between “low embedding rate” and “nothing embed-
ded.”

A B“∪◦” → Ax y sBa)

b) A B“∪⊕” →x y hash(A, B) s

3. It has a favourable effect if the observed values are locally close to each
other. Because the colour and brightness of close pixels correlates stronger
than that of more distant, less entropy is destroyed by combining them: Our
hash function selects limited information from several values. If we consider
one value, another value in the neighbourhood adds less information than
one more distant. If we can only keep a limited amount of information, we
discard less when we have less before. In true colour images it is better to
combine the red and the green component of one pixel, rather than two red
(or green) components of neighbouring pixels. An explanation of this might
be, that they correlate stronger, because two colour components of one pixel
have a local distance of 0.

The example in Fig. 5 illustrates the conversion of the most suitable vari-
ant a1 + 3a2 + 5a3 into code that hashes all three colour components of a pixel
for the histogram.

int histogram=new int[256];

for (int line=0; line<biHeight; line++) {

for (int i=0; i<biWidth; i++) {

int hash=0;

for (int k=1; k<=3; k++)

hash+=(2*k-1)*imageFile.readNextColourComponent();

histogram[hash%256]++;

}

}

Fig. 5. Hashing three colour components to one observed value for the histogram

4 Hide

Hide [11], a tool presented at the last workshop, uses an algorithm which is se-
cure against the chi-square attack [12]. It does not simply overwrite the least
significant bits (LSBs). Instead, the whole sample value is incremented or decre-
mented (randomly selected) if the LSB does not match already. The LSB finally
equals the next bit of the data to hide, pairs of values are not equalised, and the
chi-square attack does not work.
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Hide is also secure against the visual attacks [12], because

1. we may use JPEG files or an image taken with a digital camera that inter-
nally stores the photos using DCT based compression. However, the resulting
steganogram may be saved only in the lossless formats BMP or PNG.

2. The algorithm is adaptive and excludes saturated samples from stegano-
graphic use. This way the significant parts of the visual correlation remains
in the LSBs.

Fridrich et al. [3] presented a detection method for steganographic changes
in images that were originally stored in the JPEG format. As a consequence of
their steganalysis, they strongly recommend avoiding the use of images that have
been stored in the JPEG format as carrier for spatial-domain steganography.
First, let us have a look at the key-based pseudo-random sequence gener-

ator, which is used to form the sample sequence. According to the specifica-
tion [10], Hide uniformly modifies the signal over its length. Although the source
code of Hide is not publicly available, this is easily checked using a pathologic
carrier signal, e. g., a true colour bitmap where all pixels have 50% luminance
(grey.bmp). It is important to have no saturated colour components (0 or 255) in
this test image, because Hide excludes them from embedding. After embedding
into grey.bmp it looked still grey. Standard image manipulation programs (like
Photoshop, Gimp, . . . ) have a function to maximise the contrast of an image.
With one click on “AutoContrast” everybody can turn the steganographically
changed grey into visibly changed pixels (cf. Fig. 6, right). With the amplified
spots, it is obvious that the random number sequence is not balanced. This
sequence is the only cryptographic measure taken in Hide.
Let us now analyse the embedding function. It adjusts the LSB by increment-

ing or decrementing the sample value, or leaves it as it is. In case the LSB has
to be changed, the random generator determines whether to increment or decre-
ment. Because all saturated samples are excluded, there is no overflow from 255

Fig. 6. Hide’s user interface (left) and its unbalanced straddling (right)
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Fig. 7. Hide produces up to 26 neighbours for each colour (r, g, b)

to 0 or vice versa. Most likely all the 256 possible 8-bit sample values are present
in a carrier image. As described in [10], the effect of Hide on the histogram of the
sample values is identical to filtering it with the low-pass filter {0.25, 0.5, 0.25}.
Without access to the cover signal, it is difficult to recognise this filtering effect,
especially when less data is embedded.
However, a true colour image does not contain all possible colours. This

would require 16.7M pixels in the very unlikely case that all pixels have different
colours, or even more pixels. Only a subset of the 224 possible colours is used.
On the other hand, the difference to the next colour will most likely be more
than just ±1 in all three components, although many pixels in an image have
the same colour. In other words, Hide will generate a lot of new colours that are
very close to the origin.
Fridrich et al. [4] considered colour pairs to detect LSB encoding in colour

images. Two colours (r1, g1, b1) and (r2, g2, b2) are a close colour pair, if |r1−r2| ≤
1, |g1−g2| ≤ 1, and |b1−b2| ≤ 1. If u is the number of unique colours, the number
of all colour pairs is

(
u
2

)
. The detection algorithm consists of three steps:

1. Calculate the ratio between the number of close colour pairs and the number
of all colour pairs.

2. Embed a test message in the LSBs of randomly selected pixels.
3. Calculate the ratio again for the new image.

Now, if the two ratios are almost the same, most probably the image already
had a large message hidden inside.
The method to detect Hide does not embed any test message. Instead of

colour pairs, it considers the count of neighbour colours. LSB encoding produces
up to 7 neighbour colours for every colour in the image. Because Hide does
not simply overwrite the LSBs, it produces up to 26 neighbour colours for each
steganographically used one (cf. Fig. 7). A colour in a carrier medium has only 4
or 5 neighbours on average. Especially if we prevent visual attacks using JPEG
files or images from a digital camera with DCT based compression, no colour
will have more than 9 such neighbours. The histograms in Fig. 8 are created
using a small C program. To speed up things, the program performs three steps:
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1. insert all (non-saturated) colours of the image into a sorted tree,
2. walk through the colour tree and count the 0. . . 26 neighbours (cf. Fig. 7) of
each colour,

3. insert the colours according to their neighbour count into the histogram.

Without the tree, the program would have to consider all the non-existing colours
too. It is clear that the pathologic carrier medium grey.bmp has only one colour
(grey), and there are no other colours. So the histogram (cf. Table 2) contains
only one colour without any neighbours. After embedding 56 KB (grey56k.bmp),
this colour has 26 neighbours, and serves itself as their neighbour. The 26 newly
generated colours split into 8 colours with 7 neighbours, 12 with 11 neighbours,
and 6 with 17 neighbours.
After some small modifications this test worked also for greyscale images,

where three consecutive grey values are processed like the three colour compo-
nents of one pixel before. However, the distinction is very poor (cf. Fig. 9).
Table 2 contains 6 photos of varying resolution, scanned from paper or taken

with digital cameras. Each photo comes with 4 versions: as carrier medium, with
a one byte message embedded, with 100 bytes, and with 40 kilobytes embedded.
Obviously, Hide stores some extra data. This helps us to detect even the shortest
possible message (1 byte).
This detection method works reliably, if the carrier image is read in from

a JPEG file (which is recommended by the author of Hide). If the carrier is
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Fig. 8. Neighbourhood histogram of a carrier medium (top) and steganogram
with 40 KB embedded (bottom)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
grey.bmp 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
grey56k.bmp 0 0 0 0 0 0 0 8 0 0 0 12 0 0 0 0 0 6 0 0 0 0 0 0 0 0 1
bicycle.bmp 5616 7073 8012 8780 11437 20318 9677 10594 1241 2125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 1 byte 5616 7073 8011 8775 11430 20096 9864 10503 1467 2079 66 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 100 bytes 5615 7066 8013 8759 11361 19587 10264 10472 1881 2053 196 34 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
with 40 KB 5658 6534 6858 6656 6896 6935 6959 7120 6981 6846 6570 6486 6204 5896 5465 5211 4783 4445 4263 4086 3998 3821 3684 3299 3002 2445 1858
dixieland.bmp 8870 11996 14254 16197 17002 16557 8090 5957 1072 911 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 1 byte 8869 11989 14256 16187 16999 16486 8136 5967 1143 907 27 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
with 100 bytes 8872 11983 14237 16150 16965 16334 8306 5969 1331 929 75 12 12 10 2 0 1 1 1 0 0 0 0 0 0 0 0
with 40 KB 9093 10945 11869 12624 12605 12026 10827 9660 8425 7394 6185 5293 4416 3807 3119 2519 2026 1722 1391 1183 957 817 765 645 700 637 889
evening.bmp 3503 3727 4223 5061 7435 15994 7386 8460 941 1874 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 1 byte 3503 3726 4224 5058 7415 15816 7495 8459 1061 1903 38 6 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0
with 100 bytes 3503 3726 4221 5054 7360 15394 7746 8356 1455 1875 189 52 30 25 19 8 4 2 0 0 0 0 0 0 0 0 0
with 40 KB 3422 3533 3719 3943 4340 4799 5234 5459 5317 5282 5071 5013 4845 4382 4045 3691 3176 2863 2610 2329 2137 1897 1756 1657 1553 1710 2273
freiberg.bmp 7089 7148 8019 8358 8821 8603 4343 3126 596 411 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 1 byte 7088 7148 8002 8349 8803 8555 4422 3131 657 430 15 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
with 100 bytes 7082 7141 7982 8348 8712 8444 4604 3129 859 465 62 14 11 3 1 0 0 0 0 0 0 0 0 0 0 0 0
with 40 KB 6982 6410 6038 6127 6128 5746 5347 5102 4764 4328 3951 3633 3508 3291 3161 2960 2598 2383 2186 1858 1665 1492 1222 1012 807 664 500
hippo.bmp 3631 4175 4455 4944 5264 5366 2839 1933 377 320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 1 byte 3631 4168 4459 4926 5236 5316 2877 1971 438 338 19 6 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0
with 100 bytes 3632 4167 4419 4931 5170 5117 3066 2059 545 377 56 33 17 13 13 3 6 0 0 0 0 0 0 0 0 0 0
with 40 KB 3665 3751 3456 3298 3149 3054 3099 2934 2729 2553 2307 2262 2037 2038 1917 1742 1608 1564 1462 1550 1468 1471 1444 1309 1143 966 826
kitchen.bmp 8317 9306 8669 8411 8536 13902 6411 7364 935 1343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 1 byte 8317 9299 8669 8414 8514 13741 6561 7329 1083 1331 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
with 100 bytes 8311 9298 8654 8377 8470 13310 6864 7240 1572 1329 187 37 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0
with 40 KB 8254 8569 7246 5959 5433 5027 5004 4875 4802 4759 4772 4805 4693 4705 4619 4599 4447 4158 3851 3703 3565 3366 3157 2993 2905 2724 2228
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Fig. 9. Neighbourhood histogram of a greyscale carrier image (light) and
steganogram with 5 KB (70% of capacity) embedded (dark)

a high quality scan in BMP format the attack works less reliably, and only very
large messages are detected. With BMP carriers, the visual attack [12] might be
useful, because the saturated areas in BMPs and JPEGs have a different shape.

5 Summary and Further Work

A lower change density leads us to less noticeable changes. If an embedding func-
tion uses only a (pseudo-)randomly selected subset of changeable places in cover
media, and if there are no traces that may serve as a “fragile watermark” (e. g.
JPEG compatibility [3]), the steganographic changes are less detectable than
without dilution. As we have seen, it depends also on their strength, whether
diluted changes are detectable or not. Steganographic algorithms with low em-
bedding rates should not naturally believed to be more secure than others.
The attack on MP3Stego depends also on the variance of the block lengths

that other encoders leave in an MP3 file. To answer the question, whether files
coded with other encoders cause false alarms or not, a collection of 1308 MP3
files of unknown origin was used. It was possible to distinguish all these files
from files encoded with an 8HZ-based [1] decoder like MP3Stego. Many of these
files had a bit rate that MP3Stego cannot produce. But the deciding point for
separating different classes of MP3 encoders is the way they control the bit rate
and equalise variations.
The variance measured in the MP3 files is influenced by the bit rate. The ex-

amples svega.mp3 and svega stego.mp3 that come with the original software [6]
have twice the variance because the bit rate of 128 kbits/s is used for only one
channel (mono).
The success of the chi-square attack depends on how we define the categories

of the histogram. It is necessary to guarantee one embedded bit per observed
value. The empirically derived hash function allows the detection of one third of
about 0.2 bits per pixel in true colour images.
The attack on Hide might be improved, when we determine the frequency of

the 26 neighbours. Presently, the detection algorithm considers only the existence
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of neighbours. But to judge the exploitation of the steganographic capacity it is
necessary to consider also the ratio between the frequency of neighbour colours.
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