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ABSTRACT
This paper outlines a strategy to discriminate different ISO/
MPEG 1 Audio Layer-3 (MP3) encoding programs by statis-
tical particularities of the compressed audio streams. We use
Bayesian logic to deduce the most probable encoder on the
basis of a feature vector that can be extracted from arbitrary
MP3 files. All appropriate features used for the classification
are discussed and example results for sets of test data from
20 different codecs are given. Possible applications include
advances in information hiding, increases in the reliability
of steganographic attacks, and inferences about the origin of
MP3 files for forensic purpose. We demonstrate that a pre-
classification of MP3 encoders reduces the false alarm rate
for a steganographic detection method. Implications for the
generalisability of the proposed scheme to other file formats
are addressed.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Information Hiding

General Terms
Security

Keywords
Steganalysis, MP3 Encoder Classification, Digital Forensics

1. INTRODUCTION
The invention of the ISO/ MPEG 1 Audio Layer-3 (MP3)

audio compression algorithm [5, 12] is probably one of the
most remarkable and far-reaching developments in the area
of digital media processing. The MP3 format enables com-
pression rates of about 1/10 of the size of uncompressed digi-
tal audio while degrading the audible quality only marginally.
Together with the moderate complexity of the compression
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algorithm—software implementations of MP3 coders/deco-
ders (codecs) with acceptable performance even on low bud-
get home computers soon became available—the format sim-
plified the interchange of music and resulted in worldwide
popularity for its users and sleepless nights for the music
industry. The popularity of the format fostered demand for
encoding tools and opened a market for a variety of pro-
grams for different needs. Today we count hundreds of MP3
encoder front-ends based on several dozens of encoding en-
gines ranging from proof of concept hacks to targeted prod-
ucts either tuned for high speed, or optimised to costly and
flexible tools for professional studio requirements.

Given these facts, the MP3 format became an interesting
carrier for steganographically hidden data. Steganography,
which is somewhat related to cryptography, aims to conceal
the very existence of a confidential message by hiding it im-
perceptibly within other, less suspicious data [19]. MP3 is
a promising carrier format for steganography in three ways.
At first, the popularity of the format is an advantage, be-
cause exchanging common and widely used types of data
is less conspicuous to an observer. For example, sharing
an MP3 file over the Internet is a completely common task
and doing so is a plausible form of communication. Second,
MP3 files are typically between 2 and 4 megabytes (MB) in
size and thus are larger than other common formats (e. g.,
text documents or photographs as e-mail attachments). All
forms of information hiding suffer from a small proportion of
payload compared to the total amount of information, nec-
essary to cover the message. So, larger file sizes simplify the
handling of medium-sized payloads (e. g., a text message or
a photograph). The inconveniences that come with splitting
up messages over different carriers can be almost avoided for
MP3 files. Third, the nature of the lossy MP3 compression
itself makes it attractive for steganographic use. The infor-
mation loss that is a concomitant of the encoding process
creates a certain amount of unpredictability that can be ex-
ploited to carry hidden information securely.

Compared to the suitability of MP3 files for steganog-
raphy, the amount of known steganographic tools for this
format is still quite limited. MP3Stego [20] is based on the
8hz-mp3 encoder [1] and hides message bits in the parity of
block length. Although this procedure is limited to a very
low capacity, it is (under certain conditions, see below) de-
tectable [23]. The attack is based on the analysis of statisti-
cal properties, i. e., the variance of block lengths in the MP3
stream. Stego-Lame [22] pursues another approach and em-
beds into uncompressed Pulse Code Modulation (PCM) au-
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dio data. The amount of information is so small and the em-
bedding procedure so carefully selected, that a subsequent
lossy MP3 compression does not erase the hidden informa-
tion. This tool is still in an experimental stage. An appro-
priate attack is delivered in the same bundle. In addition
to these publicly known stego-tools we expect some more
being used in the wild. Although the complexity of MP3
compression exceeds those of typical steganographic tools
(e. g., LSB image embedding), the availability of commented
source codes for MP3 encoders facilitates the composition of
derivates with steganographic extensions. Hence, advances
in the detection of steganographic data in MP3 files are rel-
evant.

The experience with the existing attack against MP3Stego
shows that the detection procedure can distinguish MP3 files
with and without steganographic content quite reliably if
they are encoded with either MP3Stego or its underlying en-
coding engine [1]. However, files from other encoders tend
to have similar statistical properties as steganograms from
MP3Stego and thus are identified as false positives. Hence,
the reliability of the detection algorithm heavily depends on
the prior knowledge about the encoder of a particular file.
While this situation might be sufficient for an academic at-
tack or proof of concept, it is definitely not optimal for real
world applications. In the fieldwork, we usually cannot ex-
pect any prior knowledge about the source of an arbitrary
MP3 file. We therefore present a procedure to determine the
encoder of MP3 files on the basis of statistical features that
are typical for a certain implementation of the MP3 format
specification. The insertion of a preclassification of MP3 en-
coders allows a steganalyst to run the appropriate detection
algorithm for the determined encoder and thus dramatically
decrease the amount of false positives. Thus it is believed
that statistical classification of MP3 encoders can increase
the reliability of detection procedures.

The rest of this paper is organised as follows. In the next
section we briefly review the relevant particularities of the
MP3 format that are analysed for the extraction of statisti-
cal features. The features themselves are explained in Sec-
tion 3. Experimental results that back the performance of
the proposed scheme are presented in Section 4, before we
discuss further applications and possible generalisations to
other file formats in Section 5.

2. ANALYSIS OF MP3 SPECIFICATION
The purpose of this section is not to repeat the architec-

ture and specification of MP3 compression [2, 12], but to
give a brief overview of those principles that are relevant as
features for our proposed statistical classification. Hence, we
focus on the latitudes that are left in the ISO specification,
which leave space for different implementations. It is the
vaguely defined particularities that finally lead to different
output streams for the same input data.

2.1 Principles of MP3 Compression
The developers of MP3 audio compression included sev-

eral techniques to maximise the relationship between per-
ceived audio quality and storage volume. In contrast to pre-
vious schemes, they designed a two-track approach. On the
first track, the audio information is split up into 32 equally
spaced frequency sub-bands. These components are sepa-
rately mapped into the time domain with a Modified Dis-
crete Cosine Transformation (MDCT). The following quan-

tisation step reduces the precision of the MDCT coefficients.
As a last step, a lossless entropy encoding of the quantised
coefficients leads to the compact representation of MP3 au-
dio data. The second track is very important for the perfor-
mance of MP3 encoding, because it is used as a control track.
Also starting from the PCM input data, a 1024-point Fourier
transformation is used to fit the local frequency spectrum as
input to a psycho-acoustic model. This model emulates the
particularities of human auditory perception and derives ap-
propriate masking functions for the input signal. The model
controls the choice of block types and quantisation factors
in the first track. Hence, this two-track approach adaptively
finds an optimal trade-off between data reduction and audi-
ble degradation for a given input signal.

Regarding the underlying data format, an MP3 stream
consists of a series of frames. Synchronisation tags separate
frames from other information sharing the same transmis-
sion or storage stream (e. g., video frames). For a given bit
rate, all MP3 frames have a fixed compressed size and repre-
sent a fixed amount of 1152 PCM samples. Usually, an MP3
frame contains 32 bits of header information, an optional
16 bit Cyclic Redundancy Check (CRC) checksum, and two
granules of compressed audio data. Each granule can be
subdivided into one (mono) or two (stereo) blocks. Since
the actual block size depends on the amount of information
that is required to describe the input signal, it may vary
between frames. To match the floating block sizes with the
fixed frame sizes without wasting bandwidth, the MP3 stan-
dard introduces a so-called reservoir mechanism. Frames
that do not use their full capacity are filled up (partly) with
block data of subsequent frames. This method assures that
local highly dynamic sections in the input stream can be
stored with over-average precision, while less demanding sec-
tions allocate under-average space. However, the extent of
reservoir usage is limited in order to decrease the interde-
pendencies between more distant frames and to facilitate
resynchronisation in the middle of a stream.

2.2 Level of Analysis and Related Work
In order to perform a statistical characterisation of MP3

encoders we have to find differences in the encoding process.
These differences may have multiple causes. At the first
glance, all loosely defined parameters in the specification are
subject to different interpretations. However, the standard
precisely describes a large set of critical parameters includ-
ing the exact coefficients for the filter bank and threshold
values for the psycho-acoustic model. Nevertheless, some
implementations seem to vary or fine tune these parame-
ters. In addition, performance evaluations may have led to
sloppy implementations of the standard, such as shortcuts
in the inner quantisation loop or the choice of non-optimal
Huffman tables. Also, a number of parameter defaults for
meta information are up to the implementor (e. g., the Se-
rial Copy Management System (SCMS) flags, also known as
protection bit [9]). All these variations together cause par-
ticular features in the output stream that are indications
of a specific encoder and therefore are subject to a detailed
analysis.

To structure the occurrences of implementation specific
particularities in the MP3 encoding process, we will sub-
divide the process into three layers as shown in Table 1.
The transformation layer includes all “passive” operations
that directly affect the audio data, namely the filter bank,
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Table 1: Structure of MP3 encoding process

Functionality Points for analysis

Transformation Layer

- Filter bank - Frequency range

- MDCT transform - Filter noise

- FFT transform - Audible artefacts

Modelling Layer

- Quantisation loop - Size control

- Model computation - Model decisions

- Table selection - Capability usage

Bitstream Layer

- Auxiliary data - Surface information

- Frame header bits - SCMS protection bit

- Checksums - SCMS original bit

- Stream formatting

and the MDCT and Fast Fourier (FFT) time to frequency
transformations, respectively. In this layer, variations in
the filter coefficients or in the precision of the floating point
operations may cause measurable features such as typical
frequency ranges or additional noise components.

We define all “active” components of the compression al-
gorithm as part of the modelling layer. These sub-processes
are less close to the underlying audio data and mainly per-
form the trade-off between size and quality of the com-
pressed data. In this layer, encoder differences basically
occur in three ways:

1. Calculation of size control quantities, e. g., whether net
or gross file sizes are used as reference for the bit rate
control.

2. Model decisions: Different threshold values lead to
different marginal distributions of control parameters
over the data stream.

3. Capability usage: Some encoders do not support all
compression modes specified in the MP3 standard.

The uppermost layer, which we call bit stream layer, han-
dles the formatting of already compressed MP3 frames into a
valid bit stream. These operations include the composition
of frame headers, the optional calculation of CRC checksums
for error detection, and the insertion of meta data. For in-
stance, quasi-standardised ID3 tags [13] contain information
about the names of artists, interprets, and publishers of au-
dio files. Optional VBR (variable bit rate) headers store
additional data evaluated by some MP3 players to display
valid progress bars and enable efficient skipping within MP3
files with variable bit rate.1 The existence of a certain kind

1As MP3 has been specified forconstant bit rates (CBR) the
majority of MP3 files are encoded as CBR with one of the predefined
rates. However, some encoding programs optionally encode each
frame with a different bit rate (out of the predefines rates), thus
enablingvariable bit rate (VBR) streams with MP3.

of meta information and its default values may be used as
indicator for the encoding program.

EncSpot [4], the only tool for MP3 encoder detection we
know, relies on the deterministic surface parameters of the
bit stream layer. As these parameters are easily accessible,
it is also simple to erase or change their values and therefore
trick this kind of encoder detection. Therefore we decided
to use statistical features related with deeper structures of
the encoder and thus are more difficult to manipulate. Our
initial experiments with parameters of the transformation
layer showed that those tend to be dependent on the type
of audio data actually encoded. For example, it is impos-
sible to measure encoder characteristics, such as the upper
frequency bound, if the encoded audio material does not use
the full range. Also, artefacts occur at typical envelopes or
frequency changes that do not appear similarly in all kinds
of music. Hence, we decided to focus our level of analysis
to the modelling layer, which promises to deliver the most
robust features in terms of source data independency and
difficulty of manipulation.

2.3 Terminology and Procedure
To precisely describe the nature of the features we intro-

duce some formal notations. We denote a medium m as m0

for the source (i. e., uncompressed) representation and as
mi = ei(m0) if it is encoded with encoding program ei. ei

is element of the set of n encoders E = {e1, e2, . . . , en}. We
write the set of all files encoded using ei as Mi = ei(M0),
where M0 is the set of all uncompressed source media.

The function f(m) extracts a symbolic feature x from m.
The vector of k different features

x = f(m) = (f1(m), f2(m), . . . , fk(m))

is called feature vector. The components of the feature
vector x are selected to be as similar as possible for dif-
ferent media m ∈ Mi encoded with the same encoder ei,
and also as dissimilar as possible for all encoded media
m ∈ {ej(m0)|j 6= i} that are derived from m0 by encod-
ing it with other encoders. Therefore the information about
the characteristics of the encoding program is consolidated
in the value of x.

Classifiers are algorithms which automatically classify an
object, i. e., assign it according to its features to one of sev-
eral predefined classes. As the literature contains multiple
options, the choice of a specific algorithm for our purpose
was determined by the conditions given in our application.
Fisher Linear Discriminant (FLD) methods and Support
Vector Machines (SVM) have already been successfully ap-
plied for steganalysis [16, 6]. These methods perform well
for numeric (i. e., continuous) features, but are less suitable
for symbolic features. Hence, we chose to apply a classi-
fier which is based on Bayesian logic [15]. As we will show
in Section 4, we get notable results with the simple Näıve
Bayes Classifier (NBC) [3].2

We use a classifier c to establish the relation between a
specific instantiation of x = f(mi) and the encoding pro-
gram ei that was used to create mi. If we do not have any
knowledge about the encoder, we can only derive probabilis-
tic evidence about this assignment. For a given medium m

2These results are coherent with the findings from a comprehensive
evaluation of different classifiers: Compared to a set of complex
classification models, the simple NBC performed equal or superior
for many realistic decision problems [14].
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a classifier tries to compute the conditional probabilities

P (ei|f(m)) = P (ei|x1 = f1(m), x2 = f2(m), . . . , xk = fk(m)),

with 1 ≤ i ≤ n, and then selects the most probable encoder
ei, so that

P (ei|f(m)) > P (ej |f(m)), ∀ ej ∈ E\{ei}, i = c(f(m)).

The classifier’s performance depends on its parameterisa-
tion, which can be induced from data. Therefore we assem-
ble a training set

T = {(i, ei(m))|1 ≤ i ≤ n ∧m ∈ M0}.

Each element of T contains a compressed representation of
medium m and a reference to the known encoding program.
We note a classifier trained with the training set T as cT .
The encoder prediction of a specific instantiation of x, and
of an underlying medium m will be denoted as cT (x) and
cT (f(m)), respectively. To evaluate the quality of the clas-
sification, we regard the proportion p of correctly classified
cases when the classifier is run on elements of a test set S,
which is composed similarly to the training set T :

p(c, S) =
|{(i, mi) ∈ S|i = c(f(mi))}|

|S|

As a weak form of reliability evaluation, the same training
set T can be reclassified, thus cT (f(mi)) with (i, mi) ∈ T .
A somewhat stronger measure can be achieved for disjoint
test and training sets, so that S ∩ T = ∅.

3. DESCRIPTION OF FEATURES
As a result of iterative comparisons and analyses of MP3

encoder differences, we discovered a set of 10 features in the
modelling layer. For a structured presentation, the features
are assigned to categories, which will be discussed separately
in the following subsections.

3.1 Calculation of Size Control Quantities
Distinct encoders seem to differ in the way the target bit

rate is calculated, as we discovered measurable differences
in the effective bit rate. According to the MP3 standard,
each block can be encoded with one of 14 predefined bit
rates.3 However, because of the difficulty to reach an exact
compressed size, these act just as guiding numbers. Some
encoders treat these rates as an upper limit, others as an
average. Also, the encoders differ in the scope of frames
that are evaluated as control parameters for the compres-
sion loop. If broader scopes are considered, or fixed headers
at the beginning of MP3 files are also reflected in the quan-
tisation loop, then the effective bit rate varies with the file
length and converges to a target value with an increasing
number of frames.

These phenomena are depicted in Figure 1 for four se-
lected encoders on the basis of files with a nominal bit rate of
128 kbps. The curves are drawn according to a least square
estimate with a linear and a hyperbolic term over measured
data points.4 The effective bit rates βeff of 8hz-mp3 and
mp3comp depend on the number of frames p, while there is

3Bit rates for Layer-3 in kbps: 32, 40, 48, 56, 64, 80, 96, 112, 128,
160, 192, 224, 256, 320
4R2 values range between 0.83 and 0.97.
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Figure 1: Relation between effective bit rate and file
length for selected encoders

no influence for files encoded with lame or fhgprod. We
calculate the effective bit rate as

βeff =
[(filesize)− (junkbytes)− (meta information)] · 8 · ϕ

1152 · p ,

with ϕ = 44.1 kHz as sampling frequency. Even for large
files we observe a measurable difference in the marginal βeff

between all four encoders. To derive a bit rate independent
feature from this observation, we calculate a criteria %1 as
ratio between the effective bit rate βeff and the nominal bit
rate βnom:

%1 =
βeff

βnom
, with βnom =

1

p

pX
i=1

β(i)
nom,

where β
(i)
nom is the nominal bit rate given in the header of

the i-th frame. To map this ratio to a symbolic feature x1,
we define the extraction function f1 as follows:

f1(m) =

8>><>>:
0 for %1 < 1− 1 · 10−4

1 for 1− 1 · 10−4 ≤ %1 ≤ 1
2 for 1 < %1 ≤ 1 + 5 · 10−6

3 else.

The number of levels and the exact boundaries for this
feature, as well as for the following ones, are determined
by an iterative process of comparing a set of test audio files.
We report the functions which lead to the best experimental
results, even though further optimisation is still possible.

In Section 2.1, we mentioned that an MP3 stream consists
of a sequence of frames. Again, two granules share a frame
of fixed size. The quantisation loop adjusts the size of the
granules separately according to two criteria:

1. Size: The granule must fit into the available space.

2. Quality: Signal noise shall remain imperceptible.

For some encoders, e. g., shine, we observed a slight bias
for quality over size. As the ‘hard’ space limit counts on
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Figure 2: Comparison of size control in stereo files
encoded with xing3 and xing98

both granules together, the first granules g
(i)
1 of all frames

(1 ≤ i ≤ p) tend to get bigger than the second ones g
(i)
2 .

Hence, we measure the proportion of frames in the file where
the length of the first granule len(g1) dominates the second
one len(g2):

%2 =
1

p

pX
i=1

G(i), with

G(x) =


1 for len(g

(x)
1 ) > len(g

(x)
2 )

0 else.

Again, we define a mapping function, now for feature x2:

f2(m) =

8>><>>:
0 for %2 < 0.50
1 for 0.50 ≤ %2 < 0.55
2 for 0.55 ≤ %2 < 0.70
3 else.

The next feature makes use of characteristics of the reser-
voir mechanism. We found that the abruptness of the rise
in reservoir usage between silent and dynamic parts in the
audio stream differs between some encoders. Other encoders
even do not use the reservoir at all. As the vast majority of
audio files start with a tiny silence, we derive the feature x3

from the amount of bytes shared between the first and the
second frame v(1,2):

f3(m) =

8<: 0 for v(i,i+1) = 0 ∀ i : 1 ≤ i < p
1 for v(1,2) > 300
2 else.

The function f3(m) is zero if the reservoir is not used in
the whole file. The values 1 and 2 identify hard and soft
reservoir usage, respectively.

The last feature in this category is less theoretically based
and our evaluations show that it has little impact on the
classification result, except for a better separation between
two versions of the Xing encoder, namely xing98 and xing3.
However, we report it for the sake of completeness. We
observed that xing3 uses a different size control mechanism
for the second block of every granule of stereo files. The
differences are clearly visible in the histogram of lengths of
big value MDCT coefficients (see Figure 2). Following the
ISO/ MPEG 1 Audio Layer-3 terminology [12], big values
are the partition of spectral coefficients with absolute values

greater than 1. This partition holds the most energy of the
transformed audio signal and thus the average number of big
values is a valid indicator for the extent of size reduction
in the quantisation loop. To derive a continuous feature
from the different spread of histogram values in the stereo
channel, we measure the entropy from the histogram with
the approximation given in [17]:

H ≈ −
dmaxX
j=1

dj log dj + log ∆x,

with dj denoting the density of occurrences in the j-th bin
and ∆x as bin size. Since ∆x is constant for all encoders,
we use a simplified function to calculate feature x4:

f4(m) = −
60X

j=1

dj log dj

Note that in contrast to previous features, f4(m) is a contin-
uous feature that is modelled by the classifier as a normal

distributed random variable with mean µ
(4)
i and standard

deviation σ
(4)
i for the i-th encoder ei. However, as this fea-

ture evaluates the characteristics of the second channel in
stereo data, it is not applicable to mono files; hence, we
cannot discriminate between xing3 and xing98 for mono
files.

3.2 Model Decision
The psycho-acoustic model is a second source for distin-

guishing features. Differences in the computation of control
parameters or modifications in the choice of threshold values
lead to typical marginal distributions of measurable param-
eters.

The binary value preflag causes an additional amplifica-
tion of high frequencies and is individually set for each com-
pressed block bi (1 ≤ i ≤ q, with q as number of blocks in a
file). Concerning the treatment of this parameter, the ISO/
MPEG 1 Audio Layer-3 standard explicitly leaves latitude:

“The condition to switch on the preemphasis
is up to the implementation.” [12, p. 110]

To derive an operable feature we calculate the proportion of
blocks with preflag set

%5 =
1

q

qX
i=1

preflag(bi)

and map it into disjoint regions for the symbolic feature x5:
5

f5(m) =

8>>>>>>>>>>><>>>>>>>>>>>:

0 for %5 = 0.00
1 for 0.00 < %5 ≤ 0.01
2 for 0.01 < %5 ≤ 0.05
3 for 0.05 < %5 ≤ 0.10
4 for 0.10 < %5 ≤ 0.21
5 for 0.21 < %5 ≤ 0.35
6 for 0.35 < %5 ≤ 0.62
7 for 0.62 < %5 ≤ 0.77
8 else.

5Our experiments show that the symbolic interpretation ofx5 leads
to better classification results than a treatment as continuous feature
with assumed normal distribution.
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The MP3 audio format offers different block types, which
allow an optimal trade-off for sections requiring higher time
resolution at the cost of frequency resolution and vice versa.
The majority of blocks are encoded with block type 0, the
long block with lower time and higher frequency resolution.
Block type 2 defines a short block, which offers less coeffi-
cients to be stored for three different points in time. Two
more block types are specified to perform smooth shifts be-
tween the above mentioned types. Hence, the standard de-
fines a graph of valid block transitions between two adjacent
blocks bi and bi+1, as shown in Figure 3.

3

0

1

2

Figure 3: Valid MP3 block type transitions

An evaluation of block type transitions of MP3 files from
different encoders uncovers two interesting details: First,
some encoders (shine, all xing*) do not use short blocks
at all and thus always encode with block type 0. Second,
other encoders (lame, gogo, and plugger) include specific
“illegal” transitions, mainly at the beginning of a file. As
these transitions are rarely observable from other encoders,
they identify the encoder reliably. Hence, we construct the
extraction function for feature x6 as follows:6

f6(m) =

8>>>>><>>>>>:

0 for type(bi) = 0 ∀ i : 1 ≤ i ≤ q
1 for type(b1) = 0 ∧ type(b2) = 2
2 for type(b1) = 2 ∧ type(b2) = 3
3 for |{bi|type(bi) = 2}| =

|{bi|type(bi) = 3}| = 1
4 else.

We have no other explication for these strange transitions
than assuming that they are intended to leave a kind of
encoder fingerprint in the output data. It is up to a deeper
analysis of these particularities in the source code to reveal
further evidence.

3.3 Capability Usage
The third category of features exploits the fact that some

encoders do not implement all functions specified in the MP3
standard. We call this category capability usage and clearly
separate these capabilities from surface parameters, such as
header flags, because the latter can easily be changed with-
out touching the compressed data.

The Scale Factor Selection Information (SCFSI) is a pa-
rameter that allows an encoder to reuse scale factors for sub-
sequent parts of the stream if they do not change over time.
However, only few encoders use this compression method,
namely lame, gogo, and xingac21 (“AudioCatalyst”). We

6For simplicity we give the relations for mono files. Stereo files
work similar if blocks are evaluated in pairs. The given definition
is not disjoint, hence the values are assigned by the first matching
condition.

define a feature x7 reflecting the use of SCFSI:

f7(m) =


0 for scfsi(bi) = 0 ∀ i : 1 ≤ i ≤ q
1 else.

Although MP3 frames have a fixed length, the amount
of information used to describe the respective audio signal
may vary. We refer to this quantity as effective frame length
leneff(i). According to the MP3 standard, the effective frame
length has no constraints to match a multiple of bytes, words
or quad-words. However, we observed that some encoders
(8hz-mp3, bladeenc, m3ec, plugger, shine, soloh) adjust
all effective frame lengths to byte boundaries, while others
do not. We use this characteristics as feature x8:

f8(m) =


0 for leneff(i) = 0 mod 8 ∀ i : 1 ≤ i ≤ p
1 else.

After the quantisation, the MDCT coefficients are further
compressed by a Huffman style entropy coder. In contrast
to the method proposed by Huffman [8], the tables are not
computed from the marginal symbol distribution. In order
to avoid the transmission of marginal distributions or table
data, the developers of MP3 standardised a set of 28 pre-
defined Huffman tables that were empirically optimised for
the most probable cases in audio compression. In the very
rare case of longer code words an escape mechanism allows
storage of uncompressed values. An MP3 encoder chooses
the most suitable table separately and independently for
each of the three regions of the big value MDCT coeffi-
cients. As there is no efficient method to perform an op-
timal table selection, some encoders increase performance
by using heuristics to quickly select a suitable table, rather
than the optimal one. From a comparison of table usage fre-
quencies, we found two noteworthy characteristics: First, all
Xing encoders seem to avoid strictly using table number 0
for region 2.7 Second, only a few encoders (m3ec, mp3enc31,
uzura) use table 23 for the regions 1 and 2. We exploit these
observations as additional information for our classification:

f9(m) =

8>><>>:
0 for table2(bi) 6= 0 ∀ i : 1 ≤ i ≤ q
1 for ∃(bi, j) : tablej(bi) = 23,

1 ≤ i ≤ q, j = 1, 2
2 else.

Also, shine uses only a subset of the defined tables. How-
ever, as we can already identify this rarely used encoder with
several other features, we refrain from adjusting this feature
for the detection of shine.

3.4 Miscellaneous
Since our last feature does not fit in any of the above

categories, we decided to explain it separately. Independent
from whether the reservoir mechanism is used or not, there
may be a couple of bytes unused and filled up to meet the
fixed frame length. These so-called stuffing bits can be set
to any arbitrary values. For a closer examination of these
values, we composed histograms of the byte values in the
stuffing areas. While most encoders set all stuffing bits to
zero, we still found some exceptions and mapped them into
a symbolic feature x10:

7According to the standard, we count the regions from zero.
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f10(m) =

8>>><>>>:
0 for stuffing with zeros
1 for no stuffing at all
2 for stuffing with 0x55 or 0xaa

3 for stuffing with “GOGO” (0x47 and 0x4f)
4 else.

The enumeration of features in this section is a subset
of particularities we took into account and from which we
selected the most promising ones. The selection is far com-
prehensive, so it is still feasible to find further differentiating
features. Such features may be necessary to reliably sepa-
rate new encoders, or encoders that were not included in our
initial analysis.

4. EXPERIMENTAL RESULTS
For our experimental work, we used the R Statistical Frame-

work [10, 21] and implemented an extension for statisti-
cal analyses of MP3 files on the basis of the open source
MP3 player mpg123 [7]. All results are based on an MP3
database of about 2,400 files encoded with 20 different en-
coders (cf. Table 4 in the appendix). The audio data was
selected from different sources to make the measurements
independent from specific types of music or speech. We in-
cluded tracks from a re-mastered CD of Grammy Nominees,
from a compilation of Blues Brothers (including some live
recordings), further piano music by Chopin, as well as Sound
Quality Assessment Material (SQAM) files with speech and
instrumental sounds. All source files were read from CD
recordings and stored as PCM wave files with 44.1 kHz,
16 bit, stereo.

If provided, we encoded every source audio with three
constant bit rates that we believe are the most widely used
rates for MP3 files, namely 112 kbps, 128 kbps, and 192 kbps.
Additional MP3 files with variable bit rates, with two quality
settings each, were generated by the encoders iTunes, lame,
and xingac21.

4.1 Validity for Known Data
To measure the performance of our proposed method, we

implemented a Näıve Bayes Classifier (NBC) [3] for fixed
feature vectors of both symbolic and continuous features.

In the first experiment, we trained the classifier cT1 with
a training set T1 of about 2,400 cases. For each case, we
extract a feature vector f(mi) from a file encoded with a
defined encoder ei and use these tuples to induce classifi-
cation parameters for cT1 . To evaluate the performance of
cT1 we use the same feature vectors, because S1 = T1, as
input to the classifier and compare the predicted encoders
to the known true values. In this experiment we reach a hit
rate of p(cT1 , T1) = 96.2%. As a measure of confidence, we
calculate the average a-posteriori probability over the pre-
dicted encoders P̄max = 96.1%. The classifier calculates the
a-posteriori probability maxi P (ei|f(m)) for each file on the
basis of the feature vector.

Table 3 summarises the features proposed in Section 3.
We use a jack-knife method to empirically evaluate the im-
portance of each feature for the classification result. There-
fore the training and classification procedure is repeated sev-
eral times, while excluding individual features one by one.
The resulting increase of misses in the classification table is a
measure for the importance of a feature. According to these
values, the effective bit rate seems to be the most important
feature, followed by the method of reservoir usage.
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Figure 4: Comparison of classification confidence
between self generated test data (left) and data col-
lected in the wild (right).

A closer look at the results shows that the main sources
for classification errors occur between tightly related encod-
ing engines, such as the DOS and UNIX versions of Fraun-
hofer’s l3enc, and between two subsequent versions of Xing
encoders (xing3 and xing99). Also, soloh produces false
classifications as 8hz-mp3, especially for source files from the
Blues Brothers CD. To explore these misclassifications, we
debugged the soloh binary and found references to an early
version of the 8hz-mp3 encoder. Hence, the similarity in sta-
tistical features may reveal insights about the “intellectual
origin” of certain encoders.

To support our results and reduce the risk of tautological
finding, we repeat the experiment with a split-half method.
We trained the classifier cT2 with a sub sample T2 of the first
training set T1. All other elements from T1 are used in the
test set S2, so that T2∩S2 = ∅. The results of this second ex-
periment are shown in Table 5 (in the appendix). We found
an overall hit rate of p(cT2 , S2) = 94.9% and an average a-
posteriori probability of 95.9%. As both quality measures
differ only marginally from the first experiment (−1.3 and
−0.2 percentage points, respectively), we conclude that the
proposed method can also reliably identify the encoders of
unknown MP3 files.

4.2 Reliability for Unknown Data
We used classifier cT1 to determine the encoders of a ran-

dom sample of 3,000 MP3 files drawn from different sources,
with a total amount of more than 19,000 MP3 files. The
overall average a-posteriori probability is 86.9%. This is
about 10 percentage points below the values for known data.
We still consider this a good value because we are aware that
our training set certainly does not include all available en-
coders. In addition, some well separable encoders in our
assembled test database, such as uzura and shine, have not
been identified in the mass of unknown files.

Figure 4 shows the distribution of a-posteriori probabil-
ities for known and unkown test data.8 The average a-
posteriori probability for the most frequent encoders is shown
separately in Table 2.

Encoders e∗ not included in the training procedure may
lead to misclassifications in either of two ways: If the feature
vector f(m∗) is similar to one of the trained encoders then

8The latter has been reduced to bit rates between 112 kbps and
192 kbps, keeping 2912 files.
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Table 2: A-posteriori probabilities for frequently
identified encoders

Confidence Pmax(e|x)

Rank Encoder Share µ σ n

1. fhgprod 17.3 % 0.87 0.14 381

2. xingac21 11.6 % 0.99 0.04 256

3. l3enc272 10.7 % 0.95 0.08 235

4. soundjam 10.0 % 0.97 0.11 220

5. bladeenc 9.0 % 0.83 0.16 198

6. mp3comp 8.8 % 0.88 0.16 193

7. lamea 8.6 % 0.56 0.11 190

aThe low confidence may be due to different versions oflame; our
training data has been encoded with the recent V 3.93.

we face a misclassification without noticing it. In this case,
the classifier reports a high a-posteriori probability, also in-
terpreted as confidence measure, and the known features are
“blind” towards the differences between the two encoders.
To overcome this problem, one has to search for new fea-
tures between the existing and the new encoders. In the
second case, the feature vector f(m∗) is dissimilar from the
typical values of the trained encoders. Then the classifier re-
ports a low a-posteriori probability signifying the difficulties
in assigning the actual feature vector to one of the trained
classes. This case is more favourable because the classifica-
tion problem is identified. New encoders can be added by
retraining the parameters of the classifier with an extended
set.

4.3 Application for Steganalysis
To demonstrate the advances in steganalysis due to pre-

classification, we assembled a test set of about 500 pris-
tine MP3 files from different encoders together with 369
steganograms from MP3stego [20]. If we run the attack
against MP3stego [23] directly on the test set, we clearly
identify all 369 steganograms but face an additional 377
false positives (75.4%). Using the proposed method as pre-
classifier to filter all files from other encoders but 8hz-mp3

removes all false alarms, while still 312 steganograms are re-
liably detected. The miss rate of 15% can further be reduced
by using a specially trained classifier for this purpose. Only
in combination with source classification does the detection
method have sufficient discriminative power to be suitable
for a large scale search for steganograms in MP3 files.

5. DISCUSSION AND CONCLUSION
In this paper, a method is presented to determine the en-

coder of ISO/ MPEG 1 Audio Layer-3 data on the basis of
statistical features extracted from the data. We explained a
set of 10 features that were used with a Näıve Bayes Classi-
fier to discriminate between 20 different MP3 encoders. The
results show, that the proposed method is quite reliable for
special purpose test data as well as for a sample of arbitrary
MP3 files. However, the proposed scheme is far from being
the ultimate solution and it needs further refinement for real
world applications.

5.1 Limitations and Future Directions
The first obstacle is the relatively narrow range of sup-

ported bit rates. In order to keep the test database opera-
ble, we decided to concentrate on the most widely used bit
rates. Moreover, we tried to keep the features independent
from the bit rate. This approach appears to have been ef-
fective, as we do not have any problems when classifying
variable bit rate (VBR) files despite never explicitly design-
ing a feature for VBR data. However, as some encoders
change the stereo model for different bit rates—especially
for more extreme settings—further analyses of the robust-
ness of the features against bit rate changes may increase
the reliability of the classification.

As already stated, MP3 files support different stereo modes
and most encoders offer a variety of options to fine tune the
encoding result. Since the test database always uses the
(most likely) default settings and the presented features do
not care about other encoding modes, sophisticated encod-
ing parameters may cause false classifications. Hence, the
influence of stereo modes and other encoding options is sub-
ject to further research.

In addition, some of the present features rely on file pa-
rameters (e. g., total file size) or precisely evaluate the be-
ginning of a track (e. g., the initial silence). These features
will fail if only fragments of a stream shall be classified.

Regarding the composition of encoders in the training
set, we mainly cover open source encoders and the most
widely used encoders from Fraunhofer and Xing. The ver-
sions we researched were not systematically selected. Even if
we are quite confident that additional software encoders can
be added with moderate effort, we still have not examined
the characteristics of hardware encoders which, for example,
are installed in portable digital audio recorders. The typical
optimisations that are necessary to implement the MP3 en-
coding algorithm in DSP hardware might cause features of a
different kind than those we exploit to differentiate software
encoders.

To complete the list of open research questions, we refer
to possible interactions between statistical features used for
source classification and audio watermarking algorithms.

5.2 Transferability to Other Formats
The results on MP3 files show that encoder detection is

feasible and has useful applications for steganalysis and re-
lated areas. Hence, it might be an interesting question as
to whether the approach can be generalised—certainly with
adapted features—to other data formats.

Obviously, the MP3 format is a good candidate for en-
coder detection for two reasons: First, the popularity of the
format, and thus the demand for encoders, developed a mar-
ket for a couple of parallel developments in the late 1990s.
Second, the inclusion of a psycho-acoustic model simplifies
the task of feature discovery, because it leverages small nu-
merical differences in the signal decomposition to measur-
able statistics, such as block type frequencies. From this
point of view, MPEG 2 audio or MPEG 4 video seem to
be promising formats for similar research. Other formats,
for example the popular JPEG image compression scheme,
might be quite harder to classify. This format is less com-
plicated—at least in the way it is used in the overwhelming
majority of cases—and the Independent JPEG Group (IJG)
offers a standard implementation that is included in many
applications [11].
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However, judging from our experience with MP3, we are
confident that similar methods can be constructed for most
complex standards that leave latitude for implementations.
Assuming that latitude increases with complexity, we can
even be quite optimistic for future formats. Some discover-
ies we made, for example the block type signature of open
source encoders, back our optimism: As long as program-
mers leave identifying traces by even violating the standards,
whether unintentional or motivated for one’s ego, classifi-
cation will be feasible. Nevertheless, it is likely to always
remain as an iterative analytical task, which is difficult to
automate.

5.3 Related Applications
Apart from the advances in steganalytic reliability, the

proposed method may have applications in two further ways.
From an academic point of view, the insights gained from
the analysis of inter-encoder differences in MP3 files can
be used to construct new steganographic algorithms. If we
know the parameters that are treated differently by different
encoders, we can consider them as indeterministic and mod-
ify them to carry steganographic messages. Also, the design
of watermarking algorithms, which are robust against MP3
compression, gains from further knowledge about encoder
differences.

Last but not least, a more practical application for tools
derived from this approach is digital forensics. Knowledge
about the encoder of a suspicious file may lead to inferences
about a possible creator. However, we must note that it is
still possible to fool any of the presented features, at least if
some effort is spent. The output of any of these classifiers
is always a probabilistic guess and must not be considered
as outright proof.
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APPENDIX

Table 3: Overview of features used for classification

No. Description Levels Importancea

Size control features

x1 Effective bit rate ratio 4 8.35

x2 Granule size balance 4 0.08

x3 Reservoir usage ramp 3 5.01

x4 Entropy of big values cont. 2.15

Model decision features

x5 Preflag ratio 9 1.73

x6 Block type transitions 5 1.56

Capability usage features

x7 SCFSI usage 2 0.50

x8 Frame length alignment 2 0.92

x9 Huffman table selection 3 0.63

Miscellaneous features

x10 Stuffing byte values 5 0.88

aThe importance is measured with a jack-knife method: The col-
umn shows the additional overall classification error in percentage
points if the feature is left out. Hence, higher values indicate higher
importance of a feature.
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Table 4: List of Analysed MP3 Encoders

Mnemonic Name Publisher Version Year

8hz-mp3 8HZ-MP3 Encoder 8Hz Productions 02b 1998

bladeenc BladeEnc Tord Jansson 0.94.2 2001

fastenc FastEnc Fraunhofer IIS 1.02 2000

fhgprod Fraunhofer MP3 Producer Opticom 2.1 1998

gogo gogo301 petit Herumi and Pen 3.01 2001

iTunes Apple iTunes Apple Computer Inc. 4.1-52 2003

l3enc272 l3enc (Linux) Fraunhofer IIS 2.72 1997

l3encdos l3enc (MS-DOS) Fraunhofer IIS 2.60 1996

lame LAME Ain’t an MP3 Encoder Mike Cheng et al. 3.93 2003

m3ec M3E Command Line Version N/A 0.98b 2000

mp3comp MP3 Compressor MP3hC 0.9f 1997

mp3enc31 mp3enc (Demo) Fraunhofer IIS 3.1 1998

plugger Plugger Alberto Demichelis 0.4 1998

shine Shine Gabriel Bouvigne 0.1.4 2001

soloh SoloH MPEG Encoder N/A 0.07a 1998

soundjam SoundJam (Macintosh) Casady and Greene 2.5.1 2000

uzura Uzura 3 N/A (Fortran code) 1.0 2002

xing3 Xing MP3 Encoder Xing Technology Corp. 3.0-32 1997

xing98 Xing MP3 Encoder (x3enc) Xing Technology Corp. 1.02 1998

xingac21 AudioCatalyst Xing Technology Corp. 2.10 1999

Note: All trademarks are the property of their respective owners.

Table 5: Classifier performance on disjoint test data (S ∩ T = ∅)
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% of files classified as . . .
8hz-mp3 95 – – – – – – – – – – – – – 23 – – – – –

bladeenc – 100 – – – – – – – – – – – – – – – – – –

fastencc – – 100 – – – – – – – – – – – – – – – – –

fhgprod – – – 94 – – – – – – 38 – – – – – – – – –

gogo – – – – 100 – – – – – – – – – – – – – – –

iTunes – – – – – 100 – – – – – 2 – – – – – – – –

l3enc272 – – – – – – 84 – – – – – – – – – – – – –

l3encdos – – – – – – 16 100 – – – – – – – – – – – –

lame – – – – – – – – 100 – – – – – – – – – – –

m3ec – – – – – – – – – 100 – – – – 3 – – – – –

mp3comp – – – 6 – – – – – – 62 – – – – – – – – –

mp3enc31 – – – – – – – – – – – 95 – – – – – – – –

plugger – – – – – – – – – – – – 100 – – – – – – –

shine – – – – – – – – – – – – – 100 – – – – – –

soloh 5 – – – – – – – – – – – – – 74 – – – – –

soundjam – – – – – – – – – – – – – – – 100 – – – –

uzura – – – – – – – – – – – – – – – – 100 – – –

xing3 – – – – – – – – – – – 3 – – – – – 85 13 –

xing98 – – – – – – – – – – – – – – – – – 15 87 –

xingac21 – – – – – – – – – – – – – – – – – – – 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Basis: |T | = |S| ≈ 1200 files, n = 20 encoders, k = 10 features, overall error rate: 5.1 %, average classification confidence P̄max = 0.959

34


