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Abstract. We introduce a steganalytic method which takes advantage
of statistics that were preserved to prevent the chi-square attack. We
show that preserving statistics by skipping certain groups of pixels—apart
from reducing the maximum payload—does not diminish the ability to
recognise steganographic modifications. The effect is quite reverse: The
new detection method works more reliably than the chi-square attack,
if the same message was embedded by overwriting least significant bits
and straddled over the whole image.

1 Introduction

Steganography means “covered writing.” Steganographic programs are capable
of embedding a message into innocuous looking carrier media. Carrier media
can be digitised images sent as E-mail attachments or found in eBay offers. The
carrier medium is slightly modified by the embedding function so that an attacker
should not perceive such changes. Steganography is one way to communicate
confidentially: non-involved persons do not notice whether the secret message
exists or not.

If cryptography is used to communicate secretly, a third party may still no-
tice when an encrypted message is sent. However, she cannot read its content.
In some countries, such as China, there are legal restrictions for the usage of
cryptography [11]. People that are not allowed to encrypt their E-mail may fall
back to steganography and embed their secrets in images to transfer them un-
noticeable to the receiver.

Beside the topmost goal of changing the carrier medium as inconspicuously
as possible, steganographic algorithms try to implement other helpful properties,
such as a large payload and an error-free readability of the embedded content
after transmission over a distorted channel (e. g., in a radio contact). It is obvious
that these are conflicting goals. For example, steganographic changes are less
recognisable if payloads keep small.

Apparently, it is hard to satisfy the theoretical security conditions [2,10,16] in
practical implementations. Hence, new algorithms are proven to be secure against
known attacks and obvious derivations. It is for this reason, that steganalysis, the
art of detecting steganographic changes, is so successful in forms and manners
[9,15]. Steganalytic attacks aim to detect the use of steganography.
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There is a recurrent alternation of improved embedding methods and success-
ful attacks breaking these. Following this tradition, we analyse a steganographic
algorithm that was presented by Franz at the last workshop [3]. She constructed
this algorithm to overcome histogram attacks. Her new algorithm is based on
an embedding function that overwrites the least significant bits (LSB) of a car-
rier. The pure application of this method is detectable by visual and statistical
chi-square attacks [15]. So, Franz restricts the embedding function to selected
pixels to keep the histogram (first order statistics) together with the image struc-
ture (second order statistics). These measures secure the algorithm against the
aforementioned attacks.1

This paper is structured as follows: In the next section we describe the embed-
ding algorithm proposed in [3], which was designed to preserve statistical prop-
erties (PSP) of the carrier image. This algorithm basically extends the method
of overwriting the least significant bits (LSB) to prevent chi-square attacks pre-
sented in [15]. Then, in Sect. 3, we outline an attacking strategy which exploits
the preserved statistics. As the embedding algorithm keeps some relevant distri-
butions in the co-occurrence matrix, an attacker can reproduce the classification
criteria applied while embedding. A comparison between the resulting two sets
of usable and unusable pixels reveals typical embedding artefacts of the PSP
method, which is therefore detectable. Our experimental results (see Sect. 4) in-
dicate that the proposed attack detects PSP steganography even more reliably
than the chi-square attack does on simple LSB embedded data of comparable
capacity. In Sect. 5, we describe possible countermeasures and discuss their im-
pact on capacity and security. A final conclusion for future improvements of
steganographic algorithms is given in Sect. 6.

2 “Preserving Statistical Properties” Algorithm

The “Preserving Statistical Properties” (PSP) algorithm is an extension to the
widely used method of overwriting the least significant bits (LSB) in digitised me-
dia data. Both algorithms, LSB as well as PSP, embed steganographic messages
into the spatial domain representation of uncompressed or losslessly compressed
image data. Given a X × Y sized greyscale image B = {0, . . . , N − 1}X,Y with
N possible shades, let

Sk = {(x, y)|bx,y = k}, 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ k < N

be the set of pixels in B with shade k. Obviously the shades Sk are disjoint with
each other. Both algorithms assume that the shades S0,...,N−1 can be grouped
into N

2l groups G of 2l shades (l = 1, 2, . . .), so that a replacement with any
member of the same group is imperceptible. Let G be the set of all groups G in
a given image. The information which shade bx,y of the visually indistinguish-
able group members actually occurs at a certain position (x, y) can be used for

1 As recent analyses showed vulnerable cases against the RS attack [7], Franz addresses
the problem that the new method does not consider all higher order statistics [5].
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steganographic messages. Grouping shades that differ only in the least significant
bit, is the most common way to fulfil this assumption. This leads to |G| = N/2
groups

Gk = S2k ∪ S2k+1, 0 ≤ k < |G|,
and a maximum steganographic capacity of one bit per pixel. The imperceptibil-
ity assumption is plausible for the least significant bit, because adjacent shades
differ minimum in brightness and are at most exposed to quantisation noise.
Further generalisations, e. g., colour components of true colour images or indices
in sorted palette entries, are extraneous to the following considerations and we
therefore forgo a detailed discussion.

The presented LSB method is known to be vulnerable against the chi-square
attack presented in [15]. Overwriting the least significant bits according to a
uniform distributed message equalises the individual within-group distributions.
These pair wise adjustments can be reliably detected by a chi-square goodness-
of-fit test between the empirical distributions of |S2k|, and |S2k+1|, respectively,
against the expected distribution for a maximum embedded message

|S2k| + |S2k+1|
2

=
|Gk|
2

, 0 ≤ k < |G|.

The PSP algorithm was designed to resist the chi-square attack and intro-
duces two countermeasures, such as classification of groups and skewness cor-
rected embedding. Both measures are adaptive, i. e., they depend on the content
of the carrier image, and both reduce the maximum length of the hidden mes-
sage.

In this paper, we use the term classification of groups to describe a pre-
selection process, which distinguishes groups G+ ⊂ G that are safe for LSB
embedding from G− = G\G+, that are not. The chi-square attack is success-
ful against LSB embedding, because even heavily unequal distributions of group
members are equalised during embedding. Typical skewness between group mem-
bers results from plain surfaces as well as from saturated areas in the carrier
image. To preserve these characteristics, within-group dependency tests are run
on co-occurrence matrices C for each group Gk. Only those groups Gk ∈ G+

that fail the dependency tests are classified as “safe groups” and thus are used
for embedding.

A co-occurrence matrix is a transition histogram between adjacent pixels for
a defined relation in the spatial domain. It contains the frequency of a certain
shade depending on the shade of a defined neighbour. As described in [3], we
calculate

ci,j = |{(i, j)|bx,y = i ∧ bx+∆x,y+∆y = j}|,
0 ≤ i, j < N, 0 ≤ x < X, 0 ≤ y < Y

for each of the following relations (∆x, ∆y) ∈ {(1, 0), (−1, 1), (0, 1), (1, 1)} and
test the within-group dependency with four fourfold contingency tables (cf. Ta-
ble 1). The relevant entries for the dependency calculations are marked boldface
in the following co-occurrence matrix
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Table 1. Contingency table for classification of group Gk

(x, y) (x + ∆x, y + ∆y)

∈ S2k ∈ S2k+1

∑

∈ S2k c2k,2k c2k,2k+1 c′2k

∈ S2k+1 c2k+1,2k c2k+1,2k+1 c′2k+1
∑

c′′2k c′′2k+1 n

C =



















c0,0 c1,0 c2,0 c3,0 . . . c2k,0 c2k+1,0 . . . c254,0 c255,0

c0,1 c1,1 c2,1 c3,1 . . . c2k,1 c2k+1,1 . . . c254,1 c255,1

c0,2 c1,2 c2,2 c3,2 . . . c2k,2 c2k+1,2 . . . c254,2 c255,2

c0,3 c1,3 c2,3 c3,3 . . . c2k,3 c2k+1,3 . . . c254,3 c255,3

...
...

...
...

. . .
...

...
. . .

...
...

c0,2k c1,2k c2,2k c3,2k . . . c2k,2k c2k+1,2k . . . c254,2k c255,2k

c0,2k+1 c1,2k+1 c2,2k+1 c3,2k+1 . . . c2k,2k+1 c2k+1,2k+1 . . . c254,2k+1 c255,2k+1

...
...

...
...

. . .
...

...
. . .

...
...

c0,254 c1,254 c2,254 c3,254 . . . c2k,254 c2k+1,254 . . . c254,254 c255,254

c0,255 c1,255 c2,255 c3,255 . . . c2k,255 c2k+1,255 . . . c254,255 c255,255



















The test statistics χ2 is calculated according to the following equation

χ2 =
n(c2k,2kc2k+1,2k+1 − c2k,2k+1c2k+1,2k)2

c′2k c′2k+1 c′′2k c′′2k+1

.

We assume independency for values less than χ2 < 3.84, corresponding to a
significance level of pα > 0.05. If one of the four tests rejects the null hypothesis,
the whole group is classified as unsafe and excluded from embedding.[4]

For example, 40 shades (15%) of our example image shown in Fig. 1 were ex-
cluded. They cover 29.9% of the surface and are marked white in Fig. 2. Further
examinations with our test database indicate an average share of 43% of the
shades classified as unsafe causing an average loss of 30% of usable pixels.

As a second modification, the PSP algorithm overwrites the least significant
bits with exactly the same distribution as found in the carrier to avoid changes
in the first order statistics. This systematic change is the Achilles’ heel of LSB
embedding and enables successful chi-square attacks with simple histogram ana-
lyses. In contrast, PSP makes effort to adopt the message distribution to the
prior proportion by adding additional bits of required value and subsequently
permuting the message [3]. This second modification limits the capacity of group
Gk to 2 ·min(|S2k|, |S2k+1|) on average. Assuming a perfectly matching code, the
upper bound for the capacity of group Gk can be described with the entropy
relation [14]
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Fig. 1. Example greyscale image

Fig. 2. Steganographically useable pixels in the example image
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Hk = −|S2k| log2

|S2k|
|Gk| − |S2k+1| log2

|S2k+1|
|Gk| .

However, the method employed by Franz does not achieve this limit. Using an
arithmetic decoding operation, as proposed in [13], offers a more elegant way to
preserve first order statistics—but not the exact frequencies—while embedding
message bits.

Both measures together, group classification and adaptive message distribu-
tion2, make PSP embedding secure against chi-square attacks (cf. Sect. 4).

Figure 3 contrasts LSB embedding with PSP embedding on a typical gradi-
ent part taken from an example image. The white zigzag lines separate shades
belonging to different groups. For demonstration purpose, we assume that the
shades S4 and S5 are excluded from embedding in the PSP case. Also, on the
bottom line, the combined co-occurrence matrices are given for the four applied
relations

(∆x, ∆y) ∈
{

(1, 0) (−1, 1)
(0, 1) (1, 1)

}

,
→ ↙
↓ ↘

where combined means that the respective elements of the four resulting co-
occurrence matrices are printed in each cell.

As the histograms in the middle indicate, the PSP method is not vulnerable
to pair wise levelling of shade frequencies: The first order statistics from the
carrier histogram are successfully preserved.

3 A Detection Strategy for PSP Steganography

A closer look at the co-occurrence matrices reveals that both embedding schemes
leave noticeable traits outside the framed within-group contingency tables. Ac-
cording to the PSP algorithm, groups with high within-group dependencies in the
co-occurrence matrix are excluded to prevent a complete erasure of those typi-
cal dependencies from the image. In fact, interdependencies in the co-occurrence
matrix do not only occur inside the frames. Nevertheless, these within-group
dependencies are the only information taken into account for the classification
decision.

The PSP scheme does not prevent an attacker from evaluating the between-
group dependencies. In addition, the preservation of the first order statistics
enables the attacker to re-evaluate the classification decisions and separate used
from excluded groups. Strong differences in the higher order statistics between
the two classes are a reliable indicator for PSP type steganography.

To construct our attack we need some assumptions about the characteristics
of image data. So we state that adjacent pixels correlate strongly, i. e., with
high probability they differ only minor in brightness. The majority of dissimilar
neighbours of pixels in Sk is expected to be a subset of Sk−1∪Sk+1. For example,
in our test database we found almost 60% of dissimilar adjacent pixels differing

2 Meanwhile Franz calls these measures CCM and Histo, respectively [5].
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Fig. 3. Comparison of LSB and PSP embedding

by only ±1 in brightness. Hence, any pixel in S<2k, darker than the shades in
uniformly distributed Gk, is with higher probability neighbour of the darker
pixels in S2k ∈ Gk than the brighter ones in S2k+1 ∈ Gk, and vice versa. Still
under the assumption that |S2k| = |S2k+1|, we assert

P (bx,y = a|bx′,y′ = 2k + 1) < P (bx,y = a|bx′,y′ = 2k) for a ≤ 2k,

P (bx,y = a|bx′,y′ = 2k + 1) > P (bx,y = a|bx′,y′ = 2k) else,

with x′ = x+∆x, y′ = y+∆y, and 1 ≤ √
∆x2 + ∆y2 < 2. This relation leads to

a typical structure in the co-occurrence matrix C. Table 2 shows the two relevant
columns for a group Gk and the expected individual proportions between the
corresponding frequencies.
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Table 2. Structure of Gk columns before embedding

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 > c2k+1,0

∈ S1 c2k,1 > c2k+1,1

...
... >

...
∈ S2k−1 c2k,2k−1 > c2k+1,2k−1

∈ S2k c2k,2k > c2k+1,2k

∈ S2k+1 c2k,2k+1 < c2k+1,2k+1

∈ S2k+2 c2k,2k+2 < c2k+1,2k+2

...
... <

...
∈ SN−2 c2k,N−2 < c2k+1,N−2

∈ SN−1 c2k,N−1 < c2k+1,N−1∑ |S2k| = |S2k+1|

As PSP embedding preserves the distribution within the groups and does
not mind the neighbourhood relations, it is indistinguishable from a random
permutation within each group. Given that Gk ∈ G+, it is usable for embedding.
The random permutation of the shades within Gk equalises the frequencies for
S2k and S2k+1 in relation to all other shades in the co-occurrence matrix. The
post-embedding structure of the Gk columns in C is shown in Table 3.

Table 3. Structure of Gk columns after PSP embedding

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 = c2k+1,0

∈ S1 c2k,1 = c2k+1,1

...
... =

...
∈ S2k−1 c2k,2k−1 = c2k+1,2k−1

∈ S2k c2k,2k = c2k+1,2k

∈ S2k+1 c2k,2k+1 = c2k+1,2k+1

∈ S2k+2 c2k,2k+2 = c2k+1,2k+2

...
... =

...
∈ SN−2 c2k,N−2 = c2k+1,N−2

∈ SN−1 c2k,N−1 = c2k+1,N−1∑ |S2k| = |S2k+1|

We can distinguish the pre- and post-embedding structures shown in Tables 2
and 3 with a contingency test. For this purpose, we interpret a pair of columns
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Table 4. Gk columns after embedding with imbalanced frequencies of S2k and
S2k+1

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 < c2k+1,0

∈ S1 c2k,1 < c2k+1,1

...
... <

...
∈ S2k−1 c2k,2k−1 < c2k+1,2k−1

∈ S2k c2k,2k < c2k+1,2k

∈ S2k+1 c2k,2k+1 < c2k+1,2k+1

∈ S2k+2 c2k,2k+2 < c2k+1,2k+2

...
... <

...
∈ SN−2 c2k,N−2 < c2k+1,N−2

∈ SN−1 c2k,N−1 < c2k+1,N−1∑ |S2k| < |S2k+1|

(x′, y′) (x, y)
∈ S2k ∈ S2k+1

∈ S0 c2k,0 > c2k+1,0

∈ S1 c2k,1 > c2k+1,1

...
... >

...
∈ S2k−1 c2k,2k−1 > c2k+1,2k−1

∈ S2k c2k,2k > c2k+1,2k

∈ S2k+1 c2k,2k+1 > c2k+1,2k+1

∈ S2k+2 c2k,2k+2 > c2k+1,2k+2

...
... >

...
∈ SN−2 c2k,N−2 > c2k+1,N−2

∈ SN−1 c2k,N−1 > c2k+1,N−1∑ |S2k| > |S2k+1|

from C as a contingency table and perform a chi-square test for dependency.
The former structure is supposed to show a noticeable dependency, the latter
not. We further refer to this procedure as between-group dependency test.

Even if we drop the assumption that the membership is uniformly distributed
between S2k and S2k+1 within Gk, we still expect dependencies in the carrier
image, modulated by the proportion S2k : S2k+1:

|S2k| · ca,2k+1 < |S2k+1| · ca,2k for a < 2k,

|S2k| · ca,2k+1 > |S2k+1| · ca,2k else.

As the PSP scheme uses adaptive skewness correction, the imbalanced sit-
uation is quite probable. Nevertheless, there are still different directions of the
inequality relations between adjacent columns of the co-occurrence matrix, which
are equally aligned in the groups “permuted” after the PSP embedding operation
(cf. Table 4). These alignments are also recognised as independently distributed
events by the contingency test. Hence, the skewness correction does not weaken
our ability to distinguish between permuted and original groups.

Certain practical obstacles impede using these analyses to guide a precise at-
tack on PSP embedding. At first, the columns of the co-occurrence matrix hold
a lot of low frequency entries that bias the outcome of the chi-square between-
group dependency test. Secondly, we have to take into account that the above
mentioned interrelations apply to all of the four co-occurrence matrices repre-
senting the four relations. We tackle these problems by first summing up the
four matrices and then erasing rows with row sums less than a minimum count
q. All images, whether with or without a PSP embedded message, contain a
certain amount of groups that pass the between-group dependency test. Only
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the test results of the actually usable groups in G+ contain valuable information
for an attacker about the application of PSP steganography. Therefore, the at-
tacker has to gain knowledge, which groups belong to G+. Fortunately, this is
not difficult, because the PSP scheme preserves the relevant statistics so that
the receiver is able to recalculate the initial classification of groups as shown in
Sect. 2.

The final step of the proposed attack is an inference from a set of between-
group dependency tests to the existence of steganographic content. Since the
tests are not accurate for all groups, we cannot expect independency for all
members of G+. Therefore we allow a certain number of tests below a threshold
t to pass the between-group dependency test on a pα < 0.01 significance level.
It seems sensible to choose q dependent on the number of pixels X · Y and the
threshold t on the number of groups |G|. These refinements are subject to further
research.

In brief, the attack procedure can be summarised in four steps:

1. Classify all groups according to the embedding scheme,
2. calculate and sum co-occurrence matrices for four relations,
3. test between-group dependencies in column pairs for all usable groups,
4. count positive tests and compare with threshold value.

Our experimental results described in the following section provide a proof of
concept for the proposed attack.

4 Experimental Results

To evaluate the practical capabilities of the proposed attack we assembled a test
database T0 of 100 greyscale images sized X × Y = 284 × 213 pixels (N = 256
shades). The images were randomly drawn from a large number of high resolution
photographs from a digital camera. An 8 : 1 size reduction ensures that possible
compression artefacts of the initial JPEG encoding are effectively removed [6].
The small images were stored as losslessly compressed PNG files and analysed
with the R software for statistical computing [8,12].

To compare the LSB and PSP embedding schemes, we prepared three test
sets:

1. T1: LSB embedding of uniformly distributed random bits using 100% of the
capacity (i. e., 1 bit per pixel),

2. T2: PSP embedding of uniformly distributed random bits using 100% of the
capacity (between 0.1 and 1.0 bits per pixel, depending on the image, mean
µ = 0.77),

3. T3: LSB embedding of uniformly distributed random bits using the respective
maximum capacity of T2.

The images of all test sets (T0, . . . , T3) were exposed to the chi-square attack
with a threshold criteria of pα < 0.01, as well as to the proposed PSP attack
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Table 5. Summary of experimental attacks

Attack Test set, algorithm Results
FALSE TRUE

Chi-square attack
T0: Plain carrier 92 8
T1: LSB (full capacity) 0 100

T2: PSP (max capacity) 92 8
T3: LSB (limited PSP cap.) 22 78

Proposed attack
T0: Plain carrier 94 6
T2: PSP (max capacity) 0 100

Test data: 100 greyscale images sized 284 × 213 pixel, N = 256

with a maximum number of passed tests of t = 8, and a minimum row sum of
co-occurrence cells q = 10. The results are presented in Table 5.

As expected, the chi-square attack reliably identified all LSB steganograms
with full capacity usage. However, we noted that eight percent of the tests of
pristine material led to a false positive. The same attack applied to the PSP
embedded images was comparably ineffective. The preservation of first order
statistics successfully prevents chi-square attacks.

Even if invisible to the chi-square attack, all PSP steganograms can be de-
tected with the proposed attack, although the absolute message length is only a
fractional amount of the LSB capacity. In fact, four images with less than 20%
of the respective LSB capacity are reliably detected. Regarding the number of
false positives, the discriminatory power of the PSP attack seems to exceed the
chi-square attack, even though the numbers are too small to provide strong ev-
idence. The tests on T3 reveal that passing on full capacity and accepting a
reduced message length with the well known LSB algorithm is comparatively
safer than using the more sophisticated PSP scheme.

To evaluate the stability over different utilisations of capacity between the
two embedding schemes with their respective attacks, we gradually reduced the
message lengths embedded with the PSP method. In addition, precisely the same
amount of bits embedded with PSP was also LSB embedded in the respective
images to build a comparison group. As the results in Table 6 indicate, the pro-
posed PSP attack provides higher detection rates for high capacity utilisations.

5 Discussion of Countermeasures

The proposed attack basically exploits the removal of inter-dependencies between
adjacent pixels belonging to different groups. A rather näıve approach to tackle
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Table 6. Attack reliability against capacity usage

Attacks
Capacity usage Embedding density chi-square proposed

% of max. PSP capacity av. msg. bits per pixel # of hits
out of 100

# of hits
out of 100

100% 0.77 78 100
75% 0.58 62 88
50% 0.39 45 38
25% 0.20 35 14

Test data: 100 greyscale images sized 284 × 213 pixel, N = 256

this problem could be the exclusion of all pixels with neighbours of other groups.
So the set of usable pixels will be reduced to those pixels completely surrounded
by neighbours of their own group Gk,

G′
k = {(x, y)|(x + ∆x, y + ∆y) ∈ Gk, ∀∆x, ∆y ∈ {−1, 0, 1}}.

This modification obviously withstands the proposed attack because the
between-group interdependencies are kept untouched. However, only a tiny set
of pixels meets this strict condition. For example, our test image contains only
15 usable pixels depicted black in Fig. 4. The comparably larger count of grey
pixels in Fig. 4 are also surrounded by the same group but were classified as
unsafe according to the PSP classification. Because of the vanishing capacity it
is hard to say whether an adapted attack regarding the more distant neighbours
(2 ≤ √

∆x2 + ∆y2 < 3) fails because of the low sample size or is generally im-
possible. Experiments with larger samples of images with higher resolution are
subject to further research.

Regarding this low residual capacity, the LSB algorithm may be a comparably
safe alternative. In addition, the security can be further increased by implement-
ing the advices from [15], e. g., to replace LSB overwriting by a more suitable
operation such as incrementing or decrementing.

Adaptive embedding, i. e., regarding the carrier structures, is a promising
principle for steganography but also opens new pitfalls because the receiver has
to recover the structural information to extract the message. For example, the
PSP method implements its adaptive mechanism on a group wise classification
that can be reproduced both by the receiver but also by an attacker. On the
one hand, it is important that the receiver is able to recover all necessary in-
formation to extract the message. On the other hand, any information about
which pixels are actually usable, gives also an advantage to the attacker: By
contrasting the two groups in relevant statistics, she can reveal systematic char-
acteristics that are typical for the embedding scheme but rarely observable in
pristine carrier data. We will briefly outline two measures to avoid these prob-
lems. At first, the “meta-information approach” aims to hide the classification
information by encrypting and embedding it into the safest parts of a carrier.
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Fig. 4. Pixels surrounded by the same group in our test image. Black pixels
belong to safe groups in G+, grey to unsafe

So, the receiver decodes the meta-information before using it to extract the pay-
load message. Second, the “selection channel approach” [1] completely avoids
the share of meta-information concerning the usable positions. Parity encoding
ensures that the receiver is always able to extract the message without knowl-
edge about the actually altered bits. Both approaches unfortunately reduce the
maximum message length.

6 Conclusion

The presented attack against a steganographic algorithm that preserves some
relevant statistics puts into question, whether a rather fussy preservation helps
to increase security and therefore should be included in future embedding al-
gorithms. This does not imply that the preservation of statistics is generally a
bad idea, but the way it is achieved—i. e., skipping certain “dangerous” groups
while modifying others—makes the discussed scheme vulnerable to the proposed
attack.

In addition, the exact preservation of statistics that are used for the clas-
sification decision enables an attacker to reproduce this decision. This practice
causes the sender to give up her superiority of information.

Since first and higher order statistics do heavily vary between different pic-
tures, and given an attacker who has no possibility to guess or estimate these
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parameters of the carrier, a moderate change of them does not necessarily weaken
security. It may be wise, to refocus further development of steganographic meth-
ods from compulsive preservation of parameters to the avoidance of typical—and
hence conspicuous—patterns and artefacts. For instance, the promising model-
based approach for steganography [13] already employs some of these ideas, even
though an adversary can still reproduce the distribution model.

Nevertheless, we suppose that adaptive embedding is a promising practice
but classification criteria need to be carefully selected. Using or avoiding shades
globally may be problematic in two senses. At first, it raises the danger of mis-
classifications. For example, a bright shade covering large parts of the sky in our
example image also occurs in the lower part. The dependencies in the sky cause
a global exclusion of the whole group, even if it could be used for data hiding
in the lower part. Vice versa, a shade that is independent at the overwhelming
majority of occurrences may be classified as usable even if some occurrences in a
“dangerous” context give an attacker strong evidence for steganographic modifi-
cations. The second problem of global classification concerns large numbers. The
statistical tests of an attacker tend to become the more reliable the more obser-
vations she has. Given the situation that a defined message could be transferred
either in one large or in several tiny images, we face the following obscurity.
With global criteria, the probability of detection increases with the amount of
data per pass, i. e., one large image is more dangerous than several tiny images.
Therefore, we suggest to research local adaptive mechanisms to reduce numbers
and keep detection rates low and independent from the actual image size.

As final conclusion we state that a sophisticated selection of positions for
embedding is not necessarily inferior to random selection.
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