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Abstract. We present a generalised and improved version of the cate-
gory attack on LSB steganography in JPEG images with straddled em-
bedding path. It detects more reliably low embedding rates and is also
less disturbed by double compressed images. The proposed methods are
evaluated on several thousand images. The results are compared to both
recent blind and specific attacks for JPEG embedding. The proposed at-
tack permits a more reliable detection, although it is based on first order
statistics only. Its simple structure makes it very fast.

1 Introduction

LSB embedding is probably the most widespread and most frequently analysed
steganographic method. It is instinctively considered weak. Hence many alterna-
tives have been proposed in the last years. The JPEG file format is popular for
digital photos not only in e-mail attachments. One of the first steganographic
methods for JPEG files is Jsteg [1], which overwrites the LSB of DCT coefficients.
The chi-square attack [2] demonstrated the weakness of Jsteg. Outguess [3] is an
alternative that preserves the first order statistics and thus prevents the chi-
square attack. It reserves a number of DCT coefficients to compensate for the
changes. After embedding, the exact histogram is recovered by additional spe-
cific changes. This renders the chi-square attack ineffective, since it considers the
histogram only. The chi-square attack is also prevented by F5 [4], which does not
flip LSBs at all, but decreases the absolute value of coefficients by one, if neces-
sary. F5 also increases the embedding efficiency, i. e., the message bits per change
ratio. Another interesting approach is model-based steganography [5]. It uses an
arithmetic decoder to adapt the stream of message bits to expected frequencies
derived, e. g., from a Cauchy model of DCT coefficients. All the successors of
Jsteg are immune against the chi-square attack. However, higher order statisti-
cal attacks, especially the complex blind attacks with a large feature space like
the 324 Markov features by Shi et al. [6] and the 274 merged Markov and DCT



2 Kwangsoo Lee et al.

features by Pevný and Fridrich [7] can also detect the presence of embedded
messages for the advanced steganographic JPEG methods.

Our motivation to consider again LSB embedding is twofold: With very low
embedding rates and straddling the changes over the whole medium, LSB em-
bedding is still hard to detect. This is not surprising at all. There are elaborate
attacks for the spatial domain (Pairs analysis, RS, SPA [8,9,10]) and improved
versions (scanning pixels along a space filling curve [11], adaptive hypotheses
for natural images [12]). These are not easily applied to the DCT domain. It
is unsatisfactory that the aforementioned complex blind attacks perform better
than current specific attacks (Yu et al. [13], Zhang and Ping [14]). Recent mea-
surements have shown that our previous approach [15] is not significantly better
than the blind attack with 274 mixed features for images from one particular
source. Jsteg length information can also be used to increase the detection power
of targeted Jsteg attacks as shown by Westfeld [16], however, this improvement
can easily be prevented by encryption. In practice, the images come from many
different sources, are scaled and recompressed. This drops the performance of
the blind attacks considerably. For our experiments, we use 900 images from
CBIR [17], which is a very heterogeneous set of images and, since this set too
small to train a classifier with more than 100 features, another set with 3000
never compressed TIFF images from NRCS [18]. We try to construct a similarly
heterogeneous set from this second source, scale to different sizes and compress
with different qualities. The aforementioned specific attacks do without a long
training phase, without calibrated statistics, and without a large training set:
They quickly return their result when directly applied to the suspect JPEG
medium. In this paper we propose several improved versions of this attack, which
seem to be less sensitive to double compression.

The paper construction is as follows: In the next section, we describe basic
notations and definitions, and discuss AC JPEG distribution shapes. In Section
3, we propose a general version of the category attack proposed by Lee et al. [15].
In Section 4, the experimental results are presented for Jsteg and Jphide. Finally,
we conclude this paper.

2 Preliminaries

2.1 Notations and Definitions

Let h(x) denote the histogram of DCT coefficients in the cover image and let
N be the total number of DCT coefficients. For the ease of description, we will
use probabilistic terms. Let X be the random variable of DCT coefficients in a
cover image, and f(x) be the probability distribution of X, i. e., f(x) = PX(x).
The relation between the two distributions is

f(x) =
1
N
h(x) . (1)

Let X ′ be the random variable of DCT coefficients in a stego image in which a
random message is embedded in the cover image with Jsteg. And let f ′(x) be
the probability distribution of X ′ i. e., f(x) = PX′(x).
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Let U =
∑
x6=0 h(x) denote the number of nonzero DCT coefficients (all AC

and DC) and L the number of message bits to be embedded in the JPEG image.
We will measure the capacity on a common basis: bits per nonzero coefficients
or

bpc =
L

U
, (2)

with 0 ≤ bpc ≤ 1. The bpc is for all JPEG embedding algorithms the same while
their particular capacities differ. For example, Jsteg is an application of the LSB
embedding to JPEG format. It is identical with the LSB embedding except that
the coefficient values 0 and 1 are not used for embedding. Consequently, for
Jsteg, U1 =

∑
x 6∈{0,1} h(x) and its relative capacity usage ` = L

U1
.

We assume that the message bits are random. In other words, the message
bits are assumed to be independent of the cover image and are uniformly dis-
tributed. Because the embedding path is pseudorandomly chosen, the probability
of flipping the LSB of a coefficient x 6∈ {0, 1} is `/2. Hence, one can establish a
basic relation between the cover and the stego distributions as follows: for x 6= 0,

f ′(2x) = f(2x)− `

2
(f(2x)− f(2x+ 1)) , (3)

f ′(2x+ 1) = f(2x+ 1) +
`

2
(f(2x)− f(2x+ 1)) . (4)

2.2 Consideration of AC JPEG Coefficient Distribution

The distribution of AC coefficients in JPEG images is often regarded to follow
either the Laplacian distribution [19] or the generalised Cauchy distribution [5].
The Laplacian distribution

h(x) =
λ

2
e−λ|x| (5)

and the generalised Cauchy distribution

h(x) =
p− 1

2s

(∣∣∣x
s

∣∣∣+ 1
)−p

. (6)

have common properties: the symmetry about 0 and the unimodality.
The distributions AC coefficients of DCT transformed blocks are generally

well approximated for images that are compressed for the first time. It is rea-
sonable to believe that the quantisation does not affect the symmetry, however,
we have found a considerable number of images with multimodal distribution,
probably due to the effect of double compression. For example, Fig. 1 displays
the quantisation table and the AC coefficient histogram of Y channel data of a
JPEG image obtained from CBIR [17]. Clearly, the distribution is not unimodal.
In CBIR, one can observe many JPEG images having multimodal “comb” dis-
tributions, which require special handling in steganalysis [20].

From this observation, the steganographic technique depends on the model
parameters regarding the above distributions [5]. For example, the steganalytic
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Fig. 1. A JPEG image from CBIR [17] and its quantisation table for Y channel
and the histogram of AC coefficients showing the case of the multimodal; the
frequency of the value 0 was reduced for display

technique by Yu et al. uses these model parameters [13]. One remedy for the
steganalyst is to filter out the images of the unexpected case in the test domain.
A more advanced one is to develop non-parametric solutions for the detection
like the method of Zhang and Ping (ZP) [14] and the category attack by Lee et
al. [15].

3 Generalised Category Attack

3.1 Histogram Modification for Detection

For the sake of simple description of the attack, we delete some bars in the
histogram. We need two separate histogram modifications, one for Jsteg and
another one for Jphide. After the modification, the histogram considers only
values that are usable for LSB embedding.

Let f(x) denote the probability distribution of the samples in a digital image.
Then the relations of f(x) and f ′(x) described in the Sect. 2.1 is true for all
x ∈ Z.
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We change the distribution in a way that keeps both, its smoothness as well
as the effect of LSB embedding. Jsteg does not use the values 0 and 1. For a
given histogram h(x), we put

f(x) =

{
h(x)/U1 , for x > 1 ,
h(x− 2)/U1 , for x ≤ 1 ,

(7)

where U1 is the number of usable coefficients, that is, U1 =
∑
x 6∈{0,1} h(x). For

the Jphide attack, we put

f(x) =

{
h(x)/U2 , for x > 1 ,
h(x− 3)/U2 , for x ≤ 1 ,

(8)

where U2 =
∑
x 6∈{−1,0,1} h(x) ignoring occasional changes and the negligible

cases of usable coefficients.

3.2 The Concept of the Category Attack

Consider two pairs of values: (2m, 2m+1) and (2m−1, 2m). The former is named
the induced category in a sense that LSB embedding induces the decrement of
the frequency difference,

|f ′(2m)− f ′(2m+ 1)| = (1− `)|f(2m)− f(2m+ 1)| , (9)

which is derived from (3) and (4). This fact was earlier used in the chi-square
attack [2,21], a categorical data analysis for the detection of steganography.

The latter is named the shifted category in a sense that the values are shifted
by 1. Induced and shifted categories have been termed direct and shifted pairs in
the literature before [8]. However, apart from the correspondence of these terms,
the category attack has little resemblence with the Pairs analysis that exploits
higher order statistics creating two binary vectors and evaluating their number
homogeneous and inhomogeneous pairs. The main idea of the category attack
is to use the shifted category in which the frequency differences have a different
pattern with LSB embedding compared to that in the induced category: Because
the values can be changed within an induced category containing it, the effect of
LSB embedding on the frequency difference is covered by at least two induced
categories, (2m−2, 2m−1) and (2m, 2m+1), which are overlapped by the shifted
category (2m−1, 2m). In other words, the effect is dependent on the state of the
distribution f(x) on the four consecutive sample values {2m−2, 2m−1, 2m, 2m+
1}.

The assumed sample distribution is varying, and thus, we expect that f(x)
is monotonically increasing or decreasing on many intervals with a significant
portion. For the JPEG domain, this is clear regardless of what the modality of
the distribution is. Consider a monotone decreasing interval. The equalisation
of both frequencies in the induced category implies that f(2m− 1) will increase
and f(2m) will decrease after LSB embedding. This means that the frequency
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difference in the shifted category (2m−1, 2m) grows when the embedded message
size is increasing. This is also true for the monotone increasing case. This makes
a difference to the pattern in the induced category.

In Fig. 2, the left side shows the difference between both changes of the
frequency difference in the induced and the shifted categories. The curves repre-
sent the monotone decreasing function f(x). Two adjacent circles with the same
colour represent the values in an induced category. For each circle, the arrow
indicates the changing pattern of the frequency of the sample value by LSB
embedding. The top-left and the bottom-left figure show both patterns in the
induced and the shifted categories respectively. The two arrows in one category
point in opposite directions. The category attack evaluates these differences in
a relative way using some measurements.
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Fig. 2. The concept of general categories

3.3 General Categories

In this section, we will generalise the concept of the category attack. A category
means a pair of values, say (a, b), such that a, b ∈ Z and a < b. It is more
convenient to represent the category by the small value a and the distance d =
b − a. Let Ωd be the collection of categories in which values differ by d, i. e.,
Ωd = {(a, a+d) : a ∈ Z}. For a distance d, the categories in Ωd can be classified
into LSB types of their small values. Let Ω0,d be the sub-collection of Ωd whose
members are of the form (2m, 2m + d), m ∈ Z, i. e., categories having even
values as their small values. Similarly, let Ω1,d be the sub-collection of Ωd whose
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members are of the form (2m + 1, 2m + d + 1), m ∈ Z, i. e., categories having
odd values as their small values. Then the collection Ωd is the disjoint union of
the sub-collections, Ω0,d and Ω1,d.

When the distance d is an odd value, Ω0,d and Ω1,d have some distinctive
characteristics under LSB embedding. In this case, say d = 2n−1 for some n ∈ N ,
the category collections can be rewritten as Ω0,2n−1 = {(2m, 2m+ 2n− 1) : m ∈
Z} and Ω1,2n−1 = {(2m+ 1, 2m+ 2n) : m ∈ Z}. We will refer to Ω0,2n−1 as the
collection of even categories with a distance 2n− 1 (briefly the even categories)
and to Ω1,2n−1 the collection of odd categories with a distance 2n−1 (briefly the
odd categories) respectively. The induced categories and the shifted categories
referred to in the previous section are the special case of the even and the odd
categories with the distance 1, respectively.

Let us look again at Fig. 2. The right side displays the different changing
patterns (arrows) of the frequency differences in the even and the odd categories
by LSB embedding. For the even category (2m, 2m + 2n − 1) with a distance
greater than 1, the two induced categories overlapped by the even category are
(2m, 2m+ 1) and (2m+ 2n−2, 2m+ 2n−1). Consider the monotone decreasing
interval with f(x) again. As shown in the top-right figure, the frequency f(2m)
will decrease and the frequency f(2m+2n−1) will increase after LSB embedding.
Their difference f(2m) − f(2m + 2n − 1) will decrease. On the other hand, for
the odd category (2m+1, 2m+2n) with a distance greater than 1, both induced
categories overlapped by the even category are (2m, 2m+1) and (2m+2n, 2m+
2n+ 1). Considering a monotone decreasing interval of f(x) again (cf. bottom-
right in the figure), the frequency f(2m + 1) will increase and the frequency
f(2m+2n) will decrease after LSB embedding. Their frequency difference f(2m+
1)− f(2m+ 2n) will increase. The frequency difference in the even and the odd
categories will grow with the LSB embedding rate. And this is also true for a
monotone increasing interval. Therefore, the even and the odd categories can be
viewed as the generalised concept of the induced and the shifted categories.

3.4 Measurements of the Frequency Differences in Categories

For each type of categories with a distance 2n − 1, an easy calculation of the
frequency difference as overall statistics is the sum of absolute values of the
frequency differences in the categories:

S1(0, n) =
∑
x∈Z
|f(2x)− f(2x+ 2n− 1)| , (10)

S1(1, n) =
∑
x∈Z
|f(2x+ 1)− f(2x+ 2n)| . (11)

These have linear patterns of the embedding rate ` in their change. Another
measure is of the form of the squared sum of frequency differences:

S2(0, n) =
∑
x∈Z

(f(2x)− f(2x+ 2n− 1))2 , (12)
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S2(1, n) =
∑
x∈Z

(f(2x+ 1)− f(2x+ 2n))2 . (13)

In general, the p-th powered sum of the absolute values of the frequency dif-
ferences can be considered. However, our experiments have shown no improved
detection power compared with the above measures. The following χ2-like mea-
sure was used in the original version of the category attack:

χ2(0, n) =
∑
x∈Z

(f(2x)− f(2x+ 2n− 1))2

f(2x) + f(2x+ 2n− 1)
, (14)

χ2(1, n) =
∑
x∈Z

(f(2x+ 1)− f(2x+ 2n))2

f(2x+ 1) + f(2x+ 2n)
. (15)

After LSB embedding, we would expect that

S′i(0, n) < Si(0, n) but S′i(1, n) > Si(1, n), (16)

χ2′(0, n) < χ2(0, n) but χ2′(1, n) > χ2(1, n), (17)

where i ∈ {1, 2}. Furthermore, we expect each measurement to be more sensitive
to higher embedding rates `; for example, the change of S1(0, n) and S1(1, n)
is linearly decreased and increased on ` respectively, if f(x) is increasing in all
intervals.

For a fixed distance 2n− 1, we compare both measurements in the even and
the odd categories in a relative way. Put

RSi
(n) =

Si(1, n)− Si(0, n)
Si(1, n) + Si(0, n)

, (18)

Rχ2(n) =
χ2(1, n)− χ2(0, n)
χ2(1, n) + χ2(0, n)

, (19)

We assume that cover images have a stable pattern of the relativities, RSi
(n)

and Rχ2(n). If the relativity is above a threshold, then we suppose a stego image.
Let us consider the distance 2n − 1. We have also evaluated the following

combined relativities:

CRSi
(n) =

∑n
k=1 Si(1, k)−

∑n
k=1 Si(0, k)∑n

k=1 Si(1, k) +
∑n
k=1 Si(0, k)

, (20)

CRχ2(n) =
∑n
k=1 χ

2(1, k)−
∑n
k=1 χ

2(0, k)∑n
k=1 χ

2(1, k) +
∑n
k=1 χ

2(0, k)
. (21)

When n is growing, it is reasonable that the relativity becomes more stable for
cover images. However, at the same time the relativity becomes less sensitive
to LSB embedding as our experiments have shown. There seems to exist some
trade-off between the stability and the sensitivity.
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3.5 Discussion of the Applications to Jsteg and Jphide

Assume that JPEG images have the symmetry around 0. (7) yields

f(1 + x) = h(1 + x)/U1 = h(−1− x)/U1 = f(1− x) (22)

This means that the symmetry is also true for the modified distribution with
Jsteg but the center is changed to 1. Let y = 2− 2x− 2n, then |f(2x)− f(2x+
2n− 1)| = |f(2y + 1)− f(2y + 2n)|, and thus,

Si(0, n) = Si(1, n) . (23)

Similarly, one can deduce

χ2(0, n) = χ2(1, n) . (24)

We have

RSi(n) = 0 and CRSi(n) = 0 . (25)
Rχ2(n) = 0 and CRχ2(n) = 0 (26)

As an improvement of the category attack for Jsteg, instead of h(−1), we
suggest to use h(1) for the calculation in the odd categories. So we introduce
a new histogram modification fICA(x) that is equivalent to those defined in
Eqns. (7) and (8) for the cover distributions except for fICA(1) = h(1)/U1.
Due to the symmetry h(x) = h(−x) this will not change the cover statistics.
However, because h(1) is not changed while h(−1) decreases after embedding,
the measurement of frequency difference in the odd categories will be greater
than its original version after LSB embedding. This will boost the sensitivity to
Jsteg. We will call this improved category attack (ICA).

If the cover distribution has no symmetry around a sample value, the rela-
tivity can be hardly predictable. The initial quantities of the relative differences
will fluctuate much more and consequently deviate from the mean. This is the
reason of why the category attack is worse for Jphide than Jsteg. Using the
combined version of the generalised category attack (GCA), this will be more
improved. However, there is no better way of guessing the parameter n than by
experiments.

4 Experimental Results

The results are based on two image sources. About 900 JPEG images were down-
loaded from the CBIR [17]. These 900 images are from mixed sources, different
size, colour and greyscale, and possibly double compressed. These images were
classified by all versions of the specific attacks.

For the blind attacks we faced the same problem that an investigating officer
has if he only has a small set of images to test but no sufficiently large training set.
A set of 900 images is too small to be separated into subsets for training and test
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Table 1. Selected reliabilities and false positive rates of the proposed GCA and
ICA methods in comparison to existing specific and blind attacks

bpc=0.01 bpc=0.02 bpc=0.04

Attack 2n− 1 ρ FPR0.5 ρ FPR0.5 ρ FPR0.5

Jsteg (900 CBIR images)

GCAAC CRχ2 1 0.334 0.239 0.599 0.094 0.877 0.012

GCAAC CRχ2 3 0.366 0.240 0.643 0.078 0.911 0.010

GCAAC CRχ2 5 0.341 0.237 0.612 0.098 0.897 0.020

GCAAC CRχ2 7 0.313 0.280 0.573 0.130 0.876 0.027

GCAAC CRχ2 9 0.288 0.305 0.535 0.152 0.846 0.033

ICAAC CRχ2 1 0.353 0.265 0.632 0.127 0.898 0.028

ICAAC CRχ2 3 0.277 0.319 0.513 0.191 0.805 0.067

ICAAC CRχ2 5 0.250 0.323 0.471 0.220 0.759 0.084

ICAAC CRχ2 7 0.239 0.331 0.452 0.228 0.738 0.099

ICAAC CRχ2 9 0.230 0.332 0.437 0.234 0.720 0.109

CA (GCADC CRχ2 1) 0.322 0.251 0.583 0.098 0.866 0.012

ZP β . . . . . . . . . . . . . . . . . . . . . 0.193 0.343 0.366 0.252 0.632 0.140

ZPAC β . . . . . . . . . . . . . . . . . . 0.198 0.349 0.376 0.249 0.645 0.138

Yu α . . . . . . . . . . . . . . . . . . . . . 0.056 0.487 0.110 0.477 0.209 0.441

Yu α w/o zero bin . . . . . . . 0.059 0.467 0.118 0.444 0.228 0.394

23 DCT (NRCS) . . . . . . . . . 0.062 0.455 0.129 0.411 0.247 0.301

324 Markov (NRCS) . . . . . 0.075 0.456 0.151 0.407 0.271 0.339

274 Merged (NRCS) . . . . . 0.234 0.315 0.432 0.165 0.687 0.016

Jphide (900 CBIR images)

GCAAC CRS2 1 0.154 0.361 0.296 0.250 0.526 0.119

GCAAC CRS2 3 0.163 0.404 0.313 0.286 0.564 0.112

GCAAC CRS2 5 0.178 0.388 0.344 0.272 0.623 0.095

GCAAC CRS2 7 0.166 0.408 0.318 0.301 0.577 0.108

GCAAC CRS2 9 0.163 0.406 0.313 0.330 0.570 0.118

ICAAC CRχ2 1 0.172 0.343 0.322 0.222 0.556 0.115

ICAAC CRχ2 3 0.176 0.430 0.327 0.325 0.571 0.128

ICAAC CRχ2 5 0.172 0.443 0.316 0.363 0.545 0.185

ICAAC CRχ2 7 0.163 0.448 0.303 0.378 0.525 0.201

ICAAC CRχ2 9 0.156 0.430 0.294 0.370 0.516 0.212

CA (GCADC CRχ2 1) 0.151 0.383 0.293 0.267 0.536 0.157

23 DCT (NRCS) . . . . . . . . . 0.005 0.493 0.015 0.488 0.034 0.478

324 Markov (NRCS) . . . . . 0.136 0.420 0.258 0.354 0.386 0.272

274 Merged (NRCS) . . . . . 0.159 0.378 0.305 0.283 0.524 0.182
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Fig. 3. ROC curves based on 900 CBIR images [17] for selected attacks to 0.04
bpc Jsteg (left) and 0.04 bpc Jphide (right). The three blind classifiers have been
trained on a reasonable subset of 100,000 images derived from NRCS images [18]

with about 300 features. So another 3000 large colour TIFF images (2100×1500)
were downloaded from the NRCS Photo Gallery [18], to construct a training set.
We downscaled the images using pnmscale (smaller side 600, 400, 200, 80, and
40 pixels), and converted to greyscale JPEG using pnmtojpeg (qualities 99, 95,
90, 80, 70, 60, 50). Sufficiently large subsets of these about 100,000 images3

were used to train the blind classifiers. We implemented the blind attacks by
Fridrich with 23 DCT features [22], by Shi et al. with 324 Markov features [6],
and by Pevný and Fridrich with 274 merged extended DCT and reduced Markov
features [7], the specific attacks on randomised Jsteg by Yu et al. (the model-
based approach) [13], the attack by Zhang and Ping [14], and by Lee et al. [15],
together with their attack on Jphide. We focussed on low embedding rates (0.01,
0.02, and 0.04 bits per nonzero coefficient [bpc]).

Table 1 shows selected results for the attacks on Jsteg and Jphide. Figure 3
presents the ROC curves for the proposed attacks (GCA and ICA) with their
best selection of n together with previous attacks. The ROC curve of some
attacks (e. g., the attack by Yu et al. based on their α value) is very sensitive to
the heterogeneous composition of the image set. These curves show cavities that
disappear if the same attack is applied to a homogeneous set with equally sized
images from one source. The detection power is evaluated using two measures:
one is the reliability ρ of the ROC curve, which is twice the area under the curve
minus one, and FPR0.5, the false positive rate (FPR) at true positive rate (TPR)
0.5. We applied the three blind attacks (23 DCT, 324 Markov, and 274 merged

3 The size of the training set was chosen according to the number of features, not
smaller than 10 images per feature and class.
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Fig. 4. ROC curve with threshold annotation

features), the attack by Lee et al. (CA) and the two proposed attacks GCA and
ICA to both, Jsteg and Jphide. Our canonical name for the CA is GCADC CRχ2

with n = 1. There are some more specific attacks that can only detect Jsteg:
the attack by Zhang and Ping (ZP) and the attack by Yu et al. (Yu). We also
modified the latter two for a marginal improvement: In “ZPAC” we discarded
DC coefficients, since they have a different marginal distribution and “pollute”
the statistics. In “Yu w/o zero bin” we excluded the zero bin from the Cauchy
model approximation, since this bin shrinks when nonzero bins are growing. For
the GCA and ICA we present the cases for n = 1 . . . 5 for the best available
measures. In general the best measure was CRχ2 , except for the GCA when
applied to Jphide, where we used CRS2 . The overall best result was achieved
for Jsteg with the GCA (n = 2). Next in rank follow the ICA (n = 1), but not
significantly worse (p = 0.07 for bpc= 0.04), CA, and the 274 merged Markov
and DCT features. These four attacks fulfil Ker’s criterion (FPR0.5 ≤ 0.05) [23]
for an embedding rate of 0.04 bpc. In general, the results for Jphide detection
are worse for the same embedded message length. Compared to Jsteg, Jphide
seems to be the better choice for steganography.

Note that there is no particular threshold that belongs to the ROC curve.
Every point on the ROC curve has its own threshold that determines a false
and true positive rate. To construct a classifier, we can give such a rate, and
determine the threshold, which is compared to the detector output. Figure 4
shows the ROC curve for the proposed attack with the highest reliability at 0.4
bpc.
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5 Conclusion

In this paper, we improved the Category Attack (CA) by Lee et al. to LSB
steganography in JPEG images. By using the AC JPEG histogram, the attack
was shown to be improved. Also, using the general concept of categories (GCA)
and measure extensions (ICA), the attack performed with better detection reli-
ability. It is also based only on the first order statistics, but seems to be more
robust against the effect of double compression. We will study this in more detail
in our ongoing work.
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