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1 Introduction

There are different approaches in the literature for the assessment of stegano-
graphic algorithms and steganalytic attacks. In the early papers it was considered
sufficient to show the existence of an effect for one or a few examples only. The
more the area of steganography evolved, the more diverse became the goals and
the harder to measure the improvements. Many branches of science are facing
the same problem. More and more elaborate methods are used for assessment.
We discuss aspects of the analysis of receiver operating characteristics (ROC)
from a steganographer’s point of view. ROC curves permit a reliable assessment
of steganalytic detectors, independent of their decision threshold.

2 Output of a Detector

There are a number of detectors for steganography. Some return a binary decision
(something embedded/nothing embedded). In most cases this decision is based
on comparison with a predefined threshold. The reliability can be judged by the
detector’s error rates. We can distinguish

type I errors, which occur if a message is detected in a pristine carrier medium
(false positives), and

type II errors if a steganogram is falsely considered “clean” (false negatives).

In quantitative steganalysis detectors estimate the relative length of the embed-
ded message (embedding rate: 0. . . nothing embedded, 1. . . full capacity used).
Precision is a further criterion for assessing these quantitative methods [1]. How-
ever, a lower error rate goes along with a more precise estimation in most cases.

Our showcase is a slightly idealised attack that returns the estimated embed-
ding rate. We want to assess the reliability of this attack. We have a set of carrier
media (e. g., images) in which we embed messages with rate 0.1, yielding a set
of steganograms. The detector returns Gaussian distributed values with mean
µ1 = 0 for carriers and µ2 = 0.1 for steganograms (cf. Fig. 1). Ker’s criterion [2]
requires at most 5 % type I errors (false positive rate, FPR) for 50 % detection
rate (true positive rate, TPR), or FPR0.5 ≤ 0.05. The attack under investiga-
tion just fulfils this criterion: only 5 % of the carrier files cause a detection value
≥ 0.1. The standard deviation for carriers is σ1 = 0.0608.
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Fig. 1. Density of detector values for carriers (solid) and steganograms (dashed)

A ROC curve is a plot of the true positive rate with respect to the false
positive rate. The ROC curve for a perfect detector reaches the point at FPR=0
and TPR=1. For practical results (finite number of points), the ROC curve con-
sists exclusively of vertical and horizontal line segments. Figure 2 shows the ROC
curve for a small number (left) and a large number of tested files (right). The de-
tection power is measured by the reliability ρ, which is twice the area under the
curve minus one. Note that this measure is independent of any thresholds. Each
point of the curve corresponds with a particular threshold. In theory the thresh-
old equal to the median of the detector values for carriers (which is identical
to the mean µ1 in our example) is associated with FPR=0.5 and the threshold
equal to the median of the detector values for the steganograms (identical to µ2

in our example) is associated with TPR=0.5. The deviation from these values
decreases with increasing number of observations.

The false positive rate at 50 % detection rate (FPR0.5 ≤ 0.05) is independent
of the standard deviation for steganograms σ2. In practice, this deviation may
vary. The effect of this variation is shown in Fig. 3. The false positive rate is
constant for different σ2 and fixed threshold.

Finally, the curve shape is influenced by the skedasticity of the distribution.
Figure 4 shows a detector that returns Cauchy distributed results. This second
showcase also just meets Ker’s criterion, because the 0.95 quantile of carrier
results and the median of the steganogram results coincide.

The Cauchy distribution with its heavy tails results in a ROC curve with
a sharper corner (cf. Fig. 5). Note that the curve is convex outside the interval
0 = µ1 ≤ FPR ≤ µ2 = 0.1 for Cauchy distributed errors. The reliability can be
improved by randomising the detection for results below µ1 and above µ2, which
will replace the convex parts of the curve with straight lines.
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Fig. 2. Receiver operating characteristics for 100 files (left) and 100,000 files
(right)
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Fig. 3. Varying standard deviations of detection values for steganograms
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Fig. 4. Density of Cauchy (t1) distributed detector values for carriers (solid) and
steganograms (dashed)
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Fig. 5. Correspondences between ROC curves for Cauchy and Gaussian dis-
tributed detector results
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3 Results

In this section we will compare the stability of five measures from the literature,
namely

1. the area under the curve (AUC), converted to the reliability [3],

ρ = 2 ·AUC− 1

2. the measures by Lyu and Farid [4], who measured the true positive rate at
0 % false positives (TPR0) and

3. at 1 % false positives (TPR0.01),
4. the equal error rate (EER), which is mostly used in biometrics where the

decision threshold is set in order to have approximately equal numbers of
false positives and false negatives, as well as

5. the false positive rate at 50 % detection rate (FPR0.5), which is adapted from
Ker’s criterion [2].

Table 1. Simulated confidence of the resulting reliability measures for 2× 1000
files with Gaussian distributed results (100,000 fold repetition)

TPR0 TPR0.01 FPR0.5 EER ρ
Median . . . . . . . . . . . . . . 0.060 0.255 0.050 0.205 0.755
2.5 % quantile . . . . . . . . 0.007 0.180 0.035 0.188 0.725
97.5 % quantile . . . . . . . 0.153 0.334 0.067 0.223 0.784
corresponding lower ρ — 0.682 0.711∗ 0.719∗ 0.725
corresponding upper ρ — 0.820 0.800∗ 0.789∗ 0.784
Rank by confidence 5 4 3 2 1

∗ The lower ρ of FPR0.5 and EER corresponds to the upper quantile.

Table 1 presents the results of 100,000 simulated ROC curves. Each ROC
curve was set up using 1000 Gaussian random numbers for carrier results (µ1 = 0,
σ1 = 0.0608), and another 1000 for steganograms (µ2 = 0.1, σ2 = σ1). The
parameters have been chosen to cause a median of 0.05 for the FPR0.5 (Ker
point). We determined the five measures for each of the ROC curves. The table
presents three quantiles: 0.5 (median), 0.025, and 0.975. The latter two are the
bounds of a 95 percent confidence interval. Since we know the distribution of the
“detection” results, we can express the boundaries of this interval in terms of the
reliability ρ. The theoretical reliability for Gaussian detector results is ρ = 0.7552
if the curve goes through the point FPR0.5=0.05. For the lower FPR0.5=0.035,
which is the 2.5 percent quantile in our simulation, the corresponding curve has
a higher reliability ρ = 0.800 (cf. “corresponding upper ρ” in Table 1). The 97.5
percent quantile of FPR0.5=0.067 corresponds to the lower ρ = 0.711. On this
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basis, it is possible to compare the 95 percent confidence intervals. We can score
the measures according to their confidence interval. The only exception is TPR0,
which is 0 in theory. The finite number of 2× 1000 observations per ROC curve
leads to the nonzero TPR in the table. This finding is very dependent on the
number of observations. A continuity correction would be needed here, since we
rather measure the TPR at FPR = 1

2000 instead of 0. However, it is obvious that
the TPR0 is the most volatile measure.

Table 2. Simulated confidence of the resulting reliability measures for 2× 1000
files with Cauchy distributed results (100,000 fold repetition)

TPR0 TPR0.01 FPR0.5 EER ρ
Median . . . . . . . . . . . . . . 0.001 0.013 0.050 0.098 0.805
2.5 % quantile . . . . . . . . 0.000 0.004 0.037 0.085 0.771
97.5 % quantile . . . . . . . 0.005 0.031 0.064 0.111 0.837
corresponding lower ρ — −0.973 0.754∗ 0.778∗ 0.771
corresponding upper ρ — 0.941 0.854∗ 0.830∗ 0.837
Rank by confidence 5 4 3 1 2

∗ The lower ρ of FPR0.5 and EER corresponds to the upper quantile.

Table 2 presents the results of 100,000 simulated ROC curves. This time, each
ROC curve was set up using 1000 Cauchy distributed random numbers for carrier
results (location 0, scale 0.0158), and another 1000 for steganograms (location
0.1, scale 0.0158). Again, the parameters have been chosen to cause a median
of 0.05 for the FPR0.5 (Ker point). The confidence intervals are larger than in
the previous Gaussian case. For the TPR0.01 we found the 2.5 percent quantile
below the diagonal, yielding ρ < 0. The confidence intervals of the EER and
the reliability ρ are still very close to each other. For the Cauchy distribution,
the EER is slightly more stable. This shows a dependency between the error
distribution and the stability of the measure. In our future work will investigate
this finding for particular error distributions of steganographic attacks.
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